
Version 2 © 2017 Illumio, Inc. All Rights Reserved. Published 12/1/2017

Getting Started with Illumio Core REST API
Or, How I Learned to Stop Worrying and Love the Illumio API

Jeff Francis

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 2

Table of Contents

About the author 3

A word of thanks 3

CHAPTER 0: WHO THIS BOOK IS FOR 4

CHAPTER 1: GETTING STARTED WITH THE ILLUMIO API 6

CHAPTER 2: GENERATING API CREDENTIALS 15

CHAPTER 3: EXTRACTING DATA 26

CHAPTER 4: INSERTING DATA 31

CHAPTER 5: FROM SPREADSHEETS TO LABELS 35

CHAPTER 6: ASYNCHRONOUS API CALLS 40

CHAPTER 7: CLEANING UP OUR CODE 46

CHAPTER 8: CREATING UNMANAGED WORKLOADS 51

CHAPTER 9: QUARANTINING WORKLOADS 59

CHAPTER 10: BUILDING PAIRING PROFILES 70

CHAPTER 11: BUILDING RULESETS AND RULES 75

CHAPTER 12: THE API ROSETTA STONE 87
Ruby 88
Python 89
Perl 90
C 91
Go 92
Common Lisp 93
Bash/Curl 94

CHAPTER 13: CONCLUSION 96

APPENDIX: SOURCE CODE SAMPLES 98
Chapter 2 Source Code 98
Chapter 3 Source Code 100
Chapter 4 Source Code 101
Chapter 5 Source Code 102
Chapter 6 Source Code 103
Chapter 7 Source Code 105
Chapter 8 Source Code 109
Chapter 9 Source Code 117
Chapter 10 Source Code 124
Chapter 11 Source Code 130

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 3

About the author

Jeff Francis is a Consulting Systems Engineer at Illumio, and has worked for over

25 years as a network engineer, security engineer, systems administrator,

consultant, and software developer in environments ranging from small startups

to some of the largest companies with some of the largest data centers in the

world. Jeff lives in the farm country of Western Washington along with his wife,

three kids, two goats, chinchilla, dog, and two cats named Bob (yes, both of them).

A word of thanks

While only one name goes on the cover of a book, it’s never a solo effort. Many

people contributed to this volume. Patrick Nolan served as technical editor, and

found a truly embarrassing number of mistakes in the original manuscript. Janani

Nagarajan reviewed the code for mistakes, and tested to make sure each script

actually worked as specified. Finally, Jeff Vargas turned a very large Word file into

the polished document you see before you. This book would not exist without

each of these people. Any errors in the final draft are mine, not theirs.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 4

Chapter 0: Who This Book is For

Congratulations! You (or somebody in your organization) just bought Illumio, and

it’s your job to integrate this new product into your internal systems. If you’re

reading this, you probably have a title that includes the words “DevOps,” “SRE,”

“Sysops,” or maybe “Network Engineer” or “Security Engineer.” Whatever the

title, you’re responsible for automation and perhaps integrating new network and

security products into existing provisioning systems. You almost certainly write

code, and your concern is to make new products as useful and as invisible as

possible while integrating them into your infrastructure. If any of this sounds the

least bit familiar, this book is for you. This book is about using the Illumio API to

become a part of existing systems.

As an engineer, you’re almost certainly familiar with the term API, or Application

Programming Interface. Depending on your level of programming experience, the

idea of using an API may bring joy to your heart or tears to your eyes. While the

term API may mean a hundred different things to a hundred-different people, the

Illumio ASP REST API is about as straightforward as APIs get. The Illumio API is a

RESTful API, and uses JSON over HTTPS (we’ll discuss this in more detail in the

next chapter). The Illumio ASP REST API is a fully-supported piece of the product,

and can be used to automate nearly any task that can be done with the product.

To make the most of the information in this book, there are a few skills you’re

required to have, and a few more that, if you have them, you’ll find the exercises a

bit easier. First, you’ll need a working knowledge of a reasonably modern

scripting language. What’s “reasonably modern”? And what’s a “working

knowledge”? “Reasonably modern” is a language with libraries for HTTP, REST,

and JSON. Of course, it doesn’t have to be modern, it doesn’t have to have

libraries, and it doesn’t have to be a scripting language. But these features, as

embodied in something like Ruby or Python, will make learning and working with

the API much easier. This book was written using Ruby for the example code,

though you should be able to follow along in most other similar languages,

provided you know them and their libraries.

This brings us to “working knowledge.” By this, it’s intended that you have the

ability to write at least some basic scripts without being fed each concept and

statement one at a time. While the example code is complete, you’ll learn more if

you already understand the language itself, and you’re not trying to learn both

the language and the API at the same time.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 5

You don’t need prior knowledge of JSON to use the Illumio API, but you’ll have to

learn it along the way, if you want to be successful. It’s certainly possible to learn

it as you go through the examples in this book. It’s not hard, and you don’t have to

be an expert, but you’ll need to be familiar with what it is and how it’s used to

understand what’s going on with the Illumio REST API, as JSON is the encoding

used for all data transfer (in both directions). Everything sent to and everything

received from the API is encoded in JSON. You’ll need to know how to convert

back and forth from objects in your scripting language to the JSON strings you’ll

be reading and writing using libraries. The exercises in each chapter will help

with this part.

It will also help if you understand the idea of using GET, PUT, POST, and DELETE

to manipulate a REST API over HTTP. If you understand CRUD, you’re half-way

there. While CRUD and REST are not the same thing, they’re conceptually in the

same ballpark. You can work through the tutorials without a complete

understanding of REST APIs, but an understanding will help the knowledge sink

in a bit better. As with JSON, the web has many excellent resources for learning

the basics. At the very least, read the Wikipedia articles on both REST and JSON

before proceeding if you’re not familiar with both.

While the code in this book is written in Ruby, this book is not about learning

Ruby, nor is it about writing robust software. Rather, the goal is to provide some

real-world examples of working with the Illumio ASP’s REST API. Examples are

deliberately kept as simple as possible to illustrate use of the API, and generally

avoid dealing with the consequences of errors in order to keep the scripts simple

and readable. While the scripts in this book are useful for learning, they are not

intended for production use. They are tools for learning the concepts of the

Illumio ASP REST API. Before using the techniques in this book in production, it

would be wise to add input checking, check the return values of all functions and

API calls, and write error-handling routines to deal with failures.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 6

Chapter 1: Getting Started With the Illumio API

Before beginning our quest for Illumio API Knowledge, there are some things that

need to be done to get ready. There is software to install, credentials to obtain,

and a plan to talk about.

The very first thing you’ll need is the URL of your Policy Compute Engine (PCE). It

will be of the form https://pce.yourorganization.example:8443 or something

similar. It may or may not have the “:8443” port number (or another number) on

the end. You’ll need this (both the DNS name and the port number) for every

exercise in this book.

While you’re ultimately going to be writing code for production use, it’s wise to

experiment on non-production servers. This can be a few boxes in a lab, some

virtual machines in a private cloud, or maybe some boxes in the public cloud.

However you choose to do it, keep in mind that you’ll make mistakes while you

learn, and it’s generally considered poor form to take down a production

datacenter while learning to use a new product.

You’ll also need credentials. There are two kinds of credentials for the Policy

Compute Engine. First are login credentials, which you’ll use to log in via the web

user interface. These will normally be supplied by the Policy Compute Engine

administrator. These credentials can be used to generate a second set of

credentials, your API Credentials, which are used when working with the Illumio

REST API. Unless someone has already generated these for you, obtaining API

Credentials will be your first task in the next chapter.

You’ll need a scripting language installed on your system to work with. Unless

you have a very solid knowledge of another language, such as Python, and are

willing to mentally translate the exercises in the book into that language, you’re

probably best off using Ruby. Even if you’re ultimate goal is to write Illumio API

code in another language, if you follow the exercises using Ruby, they’re more

likely to work correctly the first time.

If you’re using a Linux or macOS system, it’s entirely possible you already have

Ruby installed. If not, it should be simple to install with apt or yum on Linux, or

with MacPorts or Brew on macOS. There are a number of options for Windows,

though RubyInstaller seems to be the most popular. A quick Google search should

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 7

get you started. While it’s not strictly required, the examples are geared towards

at least Ruby version 2.1 (the example code in this book was developed and

tested with Ruby 2.4.0 on Linux and macOS using GNU Emacs 25 as an editor).

Older versions of Ruby, such as the commonly-found 1.8, may not be entirely

compatible with the examples, as some of the syntax in the language, particularly

around hash tables, has changed. When in doubt, open a

shell/terminal/command line window and type “ruby –v” and verify the version:

In Ruby, libraries are called “gems”. There are two gems you’ll need for every one

of the following chapters (plus one or two more later on): “json” and “rest-client”.

The first library is included in a standard Ruby installation (in other words, you

don’t need to do anything to get it). This is the library that converts Ruby data

structures to JSON, as well as parses JSON data back into Ruby data structures.

The second library, rest-client, does not come with Ruby by default, and must be

added. On a Linux or macOS system, this library is usually added with the

command “sudo gem install rest-client”. Windows systems will need the same

library, though it’s usually added via a GUI Gem tool, instead. If prompted, be

certain to include all necessary dependencies (though this is the default, and

should be handled automatically).

Make sure you’ve got an editor you’re comfortable with. Yes, you could write code

with WordPad. You could also listen to the Bee Gees on an 8-track player while

wearing a polyester leisure suit while you study this book. But there are more

modern choices that make things a bit easier. The most important attribute of a

program editor is that you’re comfortable with it. If you haven’t made a choice, I

won’t try to make one for you, but it’s hard to go wrong with something like

Atom. Atom has syntax highlighting, all sorts of automatic indentation and

balancing features (if you type an open-parenthesis, it automatically adds a close-

parenthesis after your cursor so you don’t forget). Most importantly, it lets you

run selected bits of code directly from the editor. Other common choices include

Eclipse, Text Wrangler, emacs, vi, and yes, WordPad, if you insist. All of these

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 8

(except WordPad) are available for Linux, macOS, and Windows. Like any tool, a

powerful editor takes some time and effort to learn, but don’t overdo it. If you’re

still struggling more with your editor after the first day than you are with the

code you’re working on, try a different editor.

Last on our list of things to gather before we start is documentation. You’ll want

to log into the Illumio Support Portal and download copies of several documents.

Upon logging in, click on “DOCUMENTATION”. Download the following four PDF

files (at a minimum, no reason not to grab all of them while you’re logged in if

you’ve got the time) and save them where you can find them easily, because you’ll

use them often:

• Release Notes

• PCE Web Console User Guide

• REST API

• REST API Schema

We’ll use the last two of these (which we’ll refer to as the “Illumio REST API

Guide” and the “Schema” or “JSON Schema”) extensively in the chapters to follow.

Release Notes are always worth reading to understand any known issues in the

current version of the Policy Compute Engine software, and the PCE Web Console

User Guide is the official resource for understanding the Illumio ASP product and

how it works, so you’ll no doubt refer to it from time to time, as well.

As you look at the Illumio REST API documentation, you’ll notice that some of the

API calls are listed as “Experimental.” There are, in fact, three categories of API

calls in Illumio. The majority of these calls have no particular type name, they’re

simply the fully supported, documented calls that perform the majority of the

actions you’ll need to take. These API calls are well-tested, well-documented, and

intended to remain stable (in other words, to not change) over long periods of

time. While new calls may be added to this group and new parameters may be

added to existing calls to support new functionality, the old calls and systems are

intended to remain relatively static. Software written using these API calls should

continue to work across one or more releases of the Illumio Policy Compute

Engine. While changes do happen, they tend to be rare and for very good reasons.

Any changes are reflected in the Illumio REST API Guide, as well as the Release

Notes.

http://www.illumio.com/
https://support.illumio.com/documentation/index.html

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 9

The term “Experimental” in certain API calls should not be cause for concern.

These calls are equally well-documented and supported as their more static

brethren; they’re labeled “Experimental” because there is potential for change in

future releases of the code. You should not be afraid to use these calls, but if you

do use them, you should carefully note any changes in the Release Notes and

Illumio REST API Guide whenever the Policy Compute Engine is upgraded. These

API calls are subject to change without prior notice with new functionality.

There are also Private API calls. These are calls into the Illumio REST API that are

made by the web front-end that are not documented and not intended for

customer use. While it’s certainly possible to reverse-engineer their functionality

using modern web tools, their use is very strongly discouraged. Making use of

these undocumented calls may have unintended consequences, and can cause

serious issues with your system. These calls also tend to change dramatically,

even with very minor software updates, rendering any software you write using

them extremely brittle. If you discover some functionality that you require that is

not covered by the documented API, please open a ticket on the Illumio Support

Portal or talk with your Sales Engineer.

Each of the chapters in this book will start with a real-world problem to solve,

then work through the steps of solving that problem using the Illumio REST API.

The task will be described at the beginning of the chapter, along with a

description of what you’ll learn and cover in that chapter. While a few chapters

are stand-alone, most build upon both code and concepts learned in previous

chapters. The complete code listing for each chapter is found in the Appendixes in

the back of this book.

Attention to detail is key when working with an API. The slightest deviation from

the specified format will cause the API to return a 406 error, without explanation

as to the specific cause. The JSON structures sent and received from the API can

be quite complex, and the tiniest mistakes in structure, while very hard to find

visually, will cause the API call to fail when submitted. Here are two examples,

the first correct, and the second incorrect. Can you find the error? I can assure

you, the API will let you know the second one is broken:

http://www.illumio.com/
https://support.illumio.com/
https://support.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 10

{"name"=>"works",

 "enabled"=>true,

 "scopes"=>

 [[{"label"=>{"href"=>"/orgs/9/labels/1136"}},

 {"label"=>{"href"=>"/orgs/9/labels/1135"}},

 {"label"=>{"href"=>"/orgs/9/labels/1134"}}]],

 "rules"=>

 [{"enabled"=>true,

 "providers"=>[{"actors"=>"ams"}],

 "consumers"=>[{"actors"=>"ams"}],

 "service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

 "ub_service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

 "sec_connect"=>false,

 "unscoped_consumers"=>false},

 {"enabled"=>true,

 "providers"=>[{"label"=>{"href"=>"/orgs/9/labels/1084"}}],

"consumers"=>[{"ip_list"=>{"href"=>"/orgs/9/sec_policy/draft/ip_lists/115"

}}],

 "service"=>{"href"=>"/orgs/9/sec_policy/draft/services/247"},

 "ub_service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

 "sec_connect"=>false,

 "unscoped_consumers"=>false}]

}

{"name"=>"broken",

 "enabled"=>true,

 "scopes"=>

 [{"label"=>{"href"=>"/orgs/9/labels/1136"}},

 {"label"=>{"href"=>"/orgs/9/labels/1135"}},

 {"label"=>{"href"=>"/orgs/9/labels/1134"}}],

 "rules"=>

 [{"enabled"=>true,

 "providers"=>[{"actors"=>"ams"}],

 "consumers"=>[{"actors"=>"ams"}],

 "service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

 "ub_service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 11

 "sec_connect"=>false,

 "unscoped_consumers"=>false},

 {"enabled"=>true,

 "providers"=>[{"label"=>{"href"=>"/orgs/9/labels/1084"}}],

"consumers"=>[{"ip_list"=>{"href"=>"/orgs/9/sec_policy/draft/ip_lists/115"

}}],

 "service"=>{"href"=>"/orgs/9/sec_policy/draft/services/247"},

 "ub_service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

 "sec_connect"=>false,

 "unscoped_consumers"=>false}]

}

Here’s a hint: The scope should be a list of lists, not a list. API coding is tricky, I tell
you. Much like piloting an airplane, using the API isn’t hard, but it’s very unforgiving
of mistakes.

And you will make mistakes. There’s a lot of detail to get absolutely perfect, every
single time. Getting the JSON correct with each of the intricate hashes, arrays of
hashes, and arrays of hashes of arrays is challenging, and I invented at least three
new and creative (though anatomically implausible) swear words and phrases while
writing Chapter 9 alone (these colorful metaphors have been omitted from the final
text of the book). The slightest error in structure, no matter how small, leaves you
with a 404, or worse, a 406 error when you submit, so learning the tools available
for debugging REST API calls is of vital importance.

So how in the world do you debug something this complex? It’s not that hard,
actually, if you use the right approach: be patient. It’s important to break the
problem into bite-sized pieces, and solve each one one at a time. There are some
powerful tools available to you. Start with a known good working example of the
JSON you want to submit. How? Let’s assume you’re trying to build the JSON for a
Ruleset. First, build the Ruleset you want in the PCE web console, then extract the
JSON for that Ruleset using the API and examine it very closely. Use this as a
template. Convert the raw JSON back into objects in the language of your choice. For
example, in Ruby, a call to JSON.parse (extracted_JSON) will return a set of Ruby
objects to use as a starting point. This helps tremendously when trying to
understand what’s expected. Use this as a template, then start filling in the fields one
at a time with your own data and re-submit the JSON using the PCE web console
until you get the desired results. When you convert this structure back into JSON, if
you’ve been reasonably careful, it should just work. You’ll need to delete the Ruleset
(or whatever you’re building) between each test of your code, because many things
you’ll build using the API cannot be duplicates, or else the API will return errors.
Later in the book, you’ll learn to delete things using the API, but for simplicity when

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 12

you’re getting started, simply delete them using the PCE web console each time you
create something using the API. After a few iterations, you should have working
Ruby data structures that produce valid JSON, which in turn produce the desired
result in the PCE.

Most of the objects created in the PCE have a large number of parameters that you
have no control over, and do not need to specify when creating a new object. For
example, nearly everything you can access via the API has an associated user name
for the user who created it, the last user to modify it, the timestamp when it was
created, the timestamp for when it was last modified, and many other fields that are
used internally. While you can certainly query these and use them, you cannot
specify them yourself. They are created and updated automatically by the PCE as
objects are manipulated. There are other fields, such as the HREF (which we’ll talk
more about later) that is automatically created when the object is created, and is
used for all subsequent references to that specific object. You don’t create it
yourself, but you do use it extensively once the PCE creates it.

The important thing to understand is that when you create a new object in the PCE
using the API, it is not necessary (or even possible) to supply every value for every
field. In fact, most objects can be created (though they’re not yet useful) by
specifying nothing more than their name at creation time. When using the PCE web
console to create objects in the PCE that you will then extract via the API and use as
templates for new objects, make sure you understand that many of the fields (the
name of the creator and modifier, as well as the creation and modification dates, for
example) are things you should remove from your template, as they’re not values
you’ll specify yourself. The Illumio REST API Guide tells you what fields you can
modify, and the JSON schema files enumerates the allowed values for each field.

When you’re trying to create something new via the API and it fails, a useful way of
locating the failure is to create the desired object with nothing more than a name (or
whatever parameters constitute the minimum for creation of an object of the
desired type). It’s usually simple enough to complete that step without errors. Once
you have that working, delete the new object from the PCE, then add one more
element, and try again. If successful, repeat until successful. If any step fails,
provided you’re only adding one element at a time, it’s easy to find where your
mistake is. It’s the most recently added element. And once you’ve found where your
error is, it’s usually not hard to figure out what your error is. Go back to your
template where you created what you wanted in the PCE web console, and compare
the JSON from that to the JSON you’re attempting to submit. The difference is usually
quite clear. Learning the patience to change only one thing at a time is by far the
most important skill you’ll need to be a successful API programmer.

In your scripts, when you make an API call, don’t automatically assume success. In
fact, plan for failure. There are many reasons an API call might fail, and many of

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 13

them are out of your control. Always check return values. Write code that handles
exceptions and unexpected values. When writing functions, sanity check the values
you’ve been given and ensure the caller is giving you complete and sane parameters
before you pass them to the API. For example, if the API call you’re about to make
requires a Label, make sure you’ve been given something that looks like a Label
before calling the API with that as a parameter.

The scripts in this book do none of this, and that’s on purpose. Handling failures
often takes as much as two thirds of the code you’ll write, which makes
understanding simple snippets of code that much harder. First, make your code
work. But don’t’ skip the step of making it resilient, or it will fail at the worst
possible time. With practice, you’ll learn to interpret errors. You’ll learn what right
and wrong looks like when looking at the JSON. And most important, you’ll start
building your own working, tested functions to start building your own code library.

There are some general guidelines to keep in mind when using the Illumio REST API.
The following list will keep you out of trouble, though it’s not expected that you will
understand every one of these Rules of thumb at this point. As you work through the
exercises in this book, this list will begin to make more sense. Refer back to it from
time to time, and make sure you understand each of the items before you deploy
real software and real production systems:

• Generate a pairing key (Chapter 10: Building Pairing Profiles) and save it
instead of creating a new key each time, so long as you don’t need the time or
usage limitations. Keys can be setup as time-bound or the number of uses can
be limited for security. Creating the minimum number of pairing keys makes it
easier when it comes time to revoke a key.

• Check return codes. Don’t assume an API call was successful unless the API
specifically tells you it was.

• Send a maximum of 500 standard API requests per minute, or 10 bulk API
requests per minute to avoid overwhelming the PCE. Excessive API requests
will result in denied queries until the system catches up. The Illumio API Guide
discusses this in depth.

• Use asynchronous queries (Chapter 6: Asynchronous API Calls) if your query
will return more than 500 results from an API GET.

• Use resource names (Label names, Workload names, etc.) that are fewer than
255 characters long.

• Let your Illumio Sales Engineer or Customer Success Advisor know if you are
using the API. These resources can offer suggestions as well as alert you to any
changes that may impact your systems.

Before we jump in and start coding, a word of caution is in order. Your Illumio ASP
installation is, by it’s very nature, a critical piece of infrastructure, and should be
protected as one of the crown jewels of your organization. It controls all access to

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 14

and from any infrastructure it protects, and control of Illumio is, in many respects,
control of your infrastructure. As a consequence, login credentials to the Policy
Compute Engine, as well as API Credentials, should be carefully protected. It’s
tempting to hard-code credentials into API scripts. We do, in fact, do exactly this in
the examples in this book. Resist the temptation to do this with production scripts.
Anyone who has the ability to read your scripts has the ability to use your
credentials for any purpose.

With that in mind, onwards!

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 15

Chapter 2: Generating API Credentials

There are two simple tasks to complete in this chapter. First, we’ll use

the PCE web console to generate a set of API Credentials (also called

an API Key). Second, we’ll use that key to fetch our org_href (a value

we’ll use in all following chapters) from the Illumio REST API.

Let’s start by generating an API key. Note that as of PCE version 17.2, it’s not
possible for SAML-authenticated users to create API keys. Keys can only be created
by users who are locally authenticated to the PCE. Additionally, any API keys that
were generated by a SAML-authenticated user on a PCE prior to an upgrade to 17.2
will be deleted at the time of the upgrade. SAML-authenticated users can, however,
use keys that were generated by locally-authenticated users.

When using a REST API (as well as other types of APIs), an API key is analogous to a
username and password, and consists of an “Authentication Username” (or login
name) and a “Secret” (or password). In the Illumio world, once an API key is created,
it’s valid for use until it’s deleted or disabled from the PCE. Any administrator of the
PCE has the ability to create and delete API keys. Here’s how to create an API key
using the PCE web console (note that it’s also possible to create an API using the API
itself – see the Illumio REST API Guide for details):

1. Log into the Illumio PCE web console using a web browser:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 16

2. Click your name in the top right corner:

3. Click “My API Keys” in the drop-down list.
4. Click “+Add” in the window that appears:

5. Fill in the Name (mandatory) and Description (optional):

6. Click Save.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 17

7. Click “Show Credentials”:

8. Copy and paste this information into a safe place. There is no way to

retrieve it once you close this screen.
9. Optionally, you may choose to download the credentials into a file by

clicking on “Download Credentials”. Keep this file in a very safe place.

The Authentication Username will take the form of:

 “api_177c7396d1fd2a371”

The Secret will resemble:

“c8a4a51e365c4cb3a74f4d79bf4e9c8b569c7fbbc1aba6a5fc287bc8746a7c75”

These are your API credentials. As noted in the introduction, this information should
be kept in a very secure place, as use of these credentials allow for full control of
your network security policy.

The remainder of this chapter is about writing our first API script to fetch our
“org_href”, which is the third piece of the required information for using the Illumio
PCE via the REST API. As of release 17.3 of the software, however, this information
is now provided at the time you create your API key. Note the difference in the
“Create API Key” dialog box below with the one illustrated in Step 5 above:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 18

While the rest of this chapter is useful for introducing you to the basic concepts of
using the API, if you’re running release 17.3 or newer of the software, it’s no longer
strictly necessary to follow the steps below to retrieve your org_href. You can simply
record it at the time you create your API key. In this example, your org_href is “1”.

Assuming you’re running a release older than 17.3 (or if you’d just like to get your
first experience with writing code for the API), we’re ready to write our first API
script. This first script isn’t particularly exciting, but there’s information we need in
order to use the rest of the API calls called the “org_href”, and this first script will
retrieve that value for us. The PCE server software was designed to support multiple
customers on the same server, and customers are grouped into organizations which
are each given an org_href to identify them uniquely. If you’re running your own
PCE on-site, your org_href will almost always be “/orgs/1”. If you’re using Illumio
Secure Cloud (the Illumio SaaS service for your Policy Compute Engine), however,
the integer part of this string could be most anything. Our first task is to learn our
org_href by logging into the API and retrieving the value that’s been assigned.

Start by opening your text editor of choice. I suggest creating a new script for each
chapter so you can refer back to earlier work later (it saves typing when you can
copy and paste from your own old scripts). Start with the following three lines at the
top of the file:

#!/usr/bin/env ruby

require 'json’

require 'rest-client’

The first line tells Linux and macOS systems to run this as a Ruby script. It’s not
strictly necessary on Windows systems, but is still considered good practice (to
keep your scripts portable). The second and third lines load the two required Ruby
libraries, JSON and rest-client. You’ll get an error when you run the script if the Ruby

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 19

interpreter is unable to find the library you requested. First, make sure you spelled
it right. Accuracy counts. If you did, and it still won’t load, do a bit of Google
searching for debugging this problem (it’s out of the scope of this guide).

Next, add lines containing your PCE login and password. Note that you use your
actual PCE credentials here (the same ones you use to log into the PCE web console),
not your API credentials you just created. This is the only script you’ll write that
uses login credentials instead of API credentials, but it’s necessary to do so in order
to retrieve your org_href.

login = "jeff.francis@illumio.com”

passwd = "SecretPassword”

As a final bit of setup, you need to tell the script how to find your Policy Compute
Engine. This will be the URL you use to log into the PCE via the PCE web console.
We’ll set a variable to the DNS name of your PCE, without the “https” and slashes bit
at the front. In order for the script to work, you’ll also need to specify a second
variable specifying the port your PCE is running on. If your PCE is running on a non-
default port, the port number will be found immediately following the host name of
your PCE (for example, “https://illumio.mycompany.com:8443” – 8443 is your port
name). If there’s no number following the host name in the URL where you log in,
it’s port 443 (make sure you have either 443 or your specific port in the line below,
or it won’t work – and don’t forget the quotation marks, it won’t work without
them):

pce = "illumio.mycompany.com”

port = “443”

Now we’re ready to make the API call to the PCE to retrieve the org_href value. If
you look in the Illumio REST API Guide, it tells you that a POST to the specified URI
with a parameter named “pce_fqdn” set to the DNS name of the PCE will generate an
auth_token, which in turn can be supplied to a second API call to gather information
on the user whose login credentials were supplied:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 20

The Ruby statement below does this, using the variables we set earlier. It constructs
a REST query, executes it, and sets the variable “response” to the data returned from
the PCE. There are some important things to note in constructing the code for our
REST query. First, we specify the URL we’re going to query. We construct the URL by
piecing together the specific DNS name and port number of your PCE, and supply
the variable “pce_fqdn” set to the appropriate value. We also specify that this will be
an HTTP POST operation, the login and password information (the Illumio API uses
BasicAuth), and sets headers in the HTTP transaction that specify that we’re sending
information in JSON format, and expect our result in JSON, as well:

response = RestClient::Request.new(:url =>

"https://"+pce+":"+port+"/api/v1/login_users/authenticate?pce_fqdn="+pce,

 :method => :post,

 :user => login,

 :password => passwd,

 :accept => :json,

 :content_type => :json).execute()

The response we get back from the PCE is a chunk of JSON that consists of a single
key:value pair. Let’s first turn the raw JSON into something ruby can work with.
We’ll use the JSON parsing library to parse this line, and set the variable “json” to the
result:

json = JSON.parse(response)

The key in the key:value pair returned is “auth_token”. Let’s set the variable
auth_token to the value part of this key:value pair:

auth_token = json['auth_token']

auth_token is a very long cryptographically-generated token (or string) that we’ll
use for the next step. We’ll use this string to authenticate against the API , which will
return a great deal of data to us, including the “org_href” that we need for further
API work. In order to retrieve this data, we’ll have to resubmit this token to another
API call:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 21

Much like the previous call, there is one supplied parameter, though in this case, it’s
a GET to the API (instead of a POST), and the parameter is specified as a header
value, rather than a POST payload. Specifically, the call wants a header named
“Authorization” with a value of “Token token=<value returned from the previous
API call>”.

This call returns considerably more information than the last, which we’ll dig into
below. Once again, we’ll create a REST query, execute it, set the returned value to a
variable, then parse the raw JSON into useful Ruby structures we can query:

response = RestClient::Request.new(:url =>

"https://"+pce+":"+port+"/api/v1/users/login",

 :method => :get,

 :user => login,

 :password => passwd,

 :accept => :json,

 :content_type => :json,

 :headers => {"Authorization" => "Token

token="+auth_token}).execute()

json = JSON.parse(response)

Let’s take a quick peek at what was returned. Here’s the blob of JSON we got back:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 22

{"full_name":"Jeff

Francis","local":true,"type":"local","href":"/users/23","auth_username":"u

ser_23","inactivity_expiration_minutes":10,"start":"2017-05-10 18:56:17

UTC","time_zone":"America/Los_Angeles","last_login_ip_address":"172.76.134

.28","last_login_on":"2017-05-

10T18:56:17.000Z","certificate":{"expiration":"2018-01-

17T23:59:59.000Z","generated":false},"login_url":"https://demo8.illum.io:4

43/login","orgs":[{"org_id":9,"org_href":"/orgs/9","display_name":"nobody"

,"role_scopes":[{"role":{"href":"/orgs/9/roles/owner"},"scope":[],"href":"

/orgs/9/users/23/role_scopes/27"}]}],"session_token":"158ac3d95983a06e8234

3a074d6015cb07eeff51c","version_tag":"60.0.0-

860323e3c59cc4e866e43f054529576660e456d6","version_date":"Thu Apr 13

15:48:16 2017 -

0700","product_version":{"version":"17.1.0","build":"5194","long_display":

"17.1.0-5194","short_display":"17.1.0"}}

That’s pretty dense. Fortunately, when properly formatted (do a quick Google
search for JSON formatters if you’d like to be able to do this yourself), it’s
considerably more readable:

{

 "full_name":"Jeff Francis",

 "local":true,

 "type":"local",

 "href":"/users/23",

 "auth_username":"user_23",

 "inactivity_expiration_minutes":10,

 "start":"2017-05-10 18:56:17 UTC",

 "time_zone":"America/Los_Angeles",

 "last_login_ip_address":"107.178.244.221",

 "last_login_on":"2017-05-10T18:56:17.000Z",

 "certificate":{

 "expiration":"2018-01-17T23:59:59.000Z",

 "generated":false

 },

 "login_url":"https://illumio.mycompany.com:443/login",

 "orgs":[

 {

 "org_id":9,

 "org_href":"/orgs/9",

 "display_name":"nobody",

 "role_scopes":[

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 23

 {

 "role":{

 "href":"/orgs/9/roles/owner"

 },

 "scope":[

],

 "href":"/orgs/9/users/23/role_scopes/27"

 }

]

 }

],

 "session_token":"158ac3d95983a06e8a343a074d6015cb07eeff51c",

 "version_tag":"60.0.0-860323e3c59cc4e866e43f054529576660e456d6",

 "version_date":"Thu Apr 13 15:48:16 2017 -0700",

 "product_version":{

 "version":"17.1.0",

 "build":"5194",

 "long_display":"17.1.0-5194",

 "short_display":"17.1.0"

 }

}

There’s a ton of useful data inside of the returned JSON. We’re looking for “org_href”,
which is found about half-way down the returned data. If we de-construct the JSON,
we see that “org_href” is one of a number of key:value pairs in a group. The group
containing this pair is part of a list (a list with only one group in it), which is the
value of the “orgs” key:value pair. Let’s look at this as code. We already parsed the
returned JSON above, and assigned it to the variable “json”. Using this, we’ll first
extract the contents of “orgs” from the returned JSON:

irb(main):015:0> json['orgs']

=> [{"org_id"=>9, "org_href"=>"/orgs/9", "display_name"=>"nobody",

"role_scopes"=>[{"role"=>{"href"=>"/orgs/9/roles/owner"}, "scope"=>[],

"href"=>"/orgs/9/users/23/role_scopes/27"}]}]

irb(main):016:0>

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 24

The value of the “orgs” key:value pair is a list. Inspecting the list, we see that there’s
only one item in it (another hash of key:value pairs). Let’s extract the first (and only)
item in the list:

irb(main):016:0> json['orgs'][0]

=> {"org_id"=>9, "org_href"=>"/orgs/9", "display_name"=>"nobody",

"role_scopes"=>[{"role"=>{"href"=>"/orgs/9/roles/owner"}, "scope"=>[],

"href"=>"/orgs/9/users/23/role_scopes/27"}]}

irb(main):017:0>

This looks almost exactly like the last result, only it’s now not a list containing a
hash, it’s just a hash. Now we can extract the org_href from the key:value pair
“org_id”:

irb(main):017:0> json['orgs'][0]['org_href']

=> “/orgs/9”

irb(main):018:0>

“/orgs/9”. That’s the bit of data we’ll need for all future API calls, along with the API
key. It wasn’t easy to get, but it’s a critical value that we’ll use in every subsequent
API call we ever make, so extracting it was both necessary and worthwhile.

The following two lines in your script will extract that value and print it:

org_id = json['orgs'][0]['org_href']

puts("Your org href is: #{org_href}")

In the next chapter, we’ll take the API key we generated earlier along with the
org_href we just obtained and use them to start making API calls. We’ll also talk a bit
about HREFs in general, which are the Illumio APIs “handles” used to refer to most
everything in the API. This next chapter will be all about extracting data from the
API. Following that, there will be chapters where we insert some data into the API.
Finally, we’ll follow that up with practical examples that automate previously
tedious tasks by making use of the API.

It’s important to note that you’ll have problems with not only this script, but all
scripts in this book if you’re using a self-signed cert to secure your PCE. There are

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 25

several ways to work around this, the easiest being to add the following parameter
to every RestClient::Request call:

:verify_ssl => false

This additional parameter will tell the SSL/TLS library to ignore bad or otherwise
non-compliant certs. This is very strongly discouraged for production systems. If
certs are not properly validated, there’s very little point in using them in the first
place.

The full source code for this chapter can be found in Chapter 2 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 26

Chapter 3: Extracting Data

In this chapter, we’re going to write a script to extract some data

from the Policy Compute Engine using the API. Specifically, we’re

going to extract a list of all Labels along with their types and their

HREFs (their global identifiers). We’re also going to start writing a

few functions that will make our work with the API easier and a little

bit more straightforward than what we did in the previous chapter.

For this chapter, as well as all subsequent chapters, you’ll need your

API Credentials as well the org_href from Chapter 2: Generating API

Credentials.

If you don’t already have some Labels defined in your Policy Compute Engine, log in
via the PCE web console and create a few (once logged in, click the three bars in the
top left corner (commonly referred to as “the hamburger”), then choose “Policy
Objects -> Labels”), and go crazy.

The first few lines should be almost the same as the previous chapter, except instead
of using your PCE login credentials, we’re going to use our API key credentials
(which is what we’ll be using from now on). Also, we’ve added the org_href
(remember to put it in quotation marks):

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.mycompany.com"

port = "443"

org_href = “/orgs/9”

We want to extract Labels, so a quick look through the Illumio REST API Guide leads
us to this entry, which tells us how to work with Labels using the API:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 27

We want to fetch the entire collection of Labels from the API, so we’ll use the query
from the first line in the table above (“Get a collection of Labels”). The table tells us
that this is an HTTP GET and specifies the URI to use. The API version is always “1”,
which is expressed as “/api/v1”, and we’ll use our org_href value of “/orgs/9” from
our previous blog post (obviously, you’ll substitute your own here). Putting these
together results in the string we submit to the API:

/api/v1/orgs/9/labels

This, of course, needs to be combined with the PCE’s DNS name, resulting in a full
URI like this:

https://illumio.mycompany.com:443/api/v1/orgs/9/labels

There is no payload to send, we simply do an HTTP GET on the URI above, and the
API will return the data we need encoded in JSON. Here’s the Ruby code that
requests the data from the Policy Compute Engine and assigns that data to a
variable:

response = RestClient::Request.new(:url =>

"https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :method => :get,

 :user => login,

 :password => passwd,

 :accept => :json,

 :content_type => :json).execute()

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 28

…which we’ll immediately parse using the JSON library:

json = JSON.parse(response)

Let’s have a look at what was returned (I’m going to leave out a few of the Labels for
brevity):

[

 {

 "href":"/orgs/9/labels/1084",

 "key":"role",

 "value":"Nginx_LB",

 "created_at":"2017-02-17T00:57:00.731Z",

 "updated_at":"2017-02-17T00:57:00.731Z",

 "created_by":{

 "href":"/users/23"

 },

 "updated_by":{

 "href":"/users/23"

 }

 },

 {

 "href":"/orgs/9/labels/1087",

 "key":"env",

 "value":"Development",

 "created_at":"2017-02-17T00:57:39.808Z",

 "updated_at":"2017-02-17T00:57:39.808Z",

 "created_by":{

 "href":"/users/23"

 },

 "updated_by":{

 "href":"/users/23"

 }

 }

]

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 29

Ignoring some of the key:value pairs, like creation and update timestamps and
users, the returned JSON is actually quite simple. We get an array of Labels, each
containing various key:value pairs. Each Label has a “handle,” which we call the
HREF. The HREF is how this specific Label (and in fact, nearly every object used in
the PCE) is referred to throughout the rest of the API and can be thought of as a
global identifier. HREFs are very important in the Illumio REST API. For example,
when specifying a list of Labels for a Workload, the Labels are specified as a list of
HREFs, each pointing to a specific Label. A Label has a type, which the API refers to
as the “key”. These are the same four types found in the PCE web console: “role”,
“app”, “env”, and “loc”, which are the API representations for Role, Application,
Environment, and Location. The name of a Label is called the “value” in the API. This
is the English name for the Label that’s used in the User Interface.

Now let’s write some code to iterate through our list and produce a nice summary of
each Label:

json.each do |j|

 puts "href: #{j['href']}"

 puts "type: #{j['key']}"

 puts "name: #{j['value']}"

 puts ""

end

When we run the script, we get:

jfrancis@hoss ~/api $./api_lesson_2.rb

href: /orgs/9/labels/1084

type: role

name: Nginx_LB

href: /orgs/9/labels/1087

type: env

name: Development

jfrancis@hoss ~/api $

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 30

That’s it! It’s that simple to extract objects from the Illumio API. There are some
advanced topics we didn’t touch on, such as pulling data from the API when there
are more than 500 results to a query. That requires the use of the Asynchronous API
calls, which we’ll cover in a future chapter. In the next chapter, we’ll look at pushing
data into the system via the API by adding some Labels that we create in an Excel
spreadsheet.

The source code for this chapter can be found in Chapter 3 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 31

Chapter 4: Inserting Data

The task in this chapter is the opposite of that in the last. Instead of

extracting Label information from the Policy Compute Engine using

the API, we’re going push Label information into the PCE via the API.

In other words, we’re going to create some new Labels.

Copy and paste the following lines from the previous chapter’s code to get started:

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.mycompany.com"

port = "443"

org_href = “/orgs/9”

Here’s another look at the table from the Illumio REST API Guide regarding Label
calls in the API. In this case, we’re interested in the “Create a Label” line:

We’ll be using a POST, and submitting a JSON data structure representing the new

Label to the same URL as last time:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 32

/api/v1/orgs/9/labels

The interesting challenge this time around is that we need to create a JSON object to

represent the new Label we want to create, which we’ll submit as the payload of the

POST operation. Creating a Label using the API is very simple, and there are only two

mandatory parameters: the key and the value (or, in English, the Type and the Name).

The other values (the HREF, as well as the user and timestamp information) are

created by the PCE when the Label is created; they’re not something we supply. How

do we know this? Again, we refer to the Illumio REST API Guide:

That’s pretty straightforward. There are two mandatory parameters (key and value)
and two optional parameters we’re not going to bother with (they can be used to
store arbitrary values, but we have no need for them in this exercise). So how to
create a JSON object in ruby? The easiest way is to start with a hash containing the
key:value pairs, then use the JSON library to transform that hash into a JSON string.
In this specific case, we need a hash containing two values, “key” and “value”. For
this exercise, let’s create a Role Label with the name “web”. We do this by creating a
hash with the two required parameters as keys, and the value for those keys as their
respective values, then converting the hash to JSON:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 33

irb(main):003:0> {"key" => "role", "value" => "web"}.to_json

=> "{\"key\":\"role\",\"value\":\"web\"}"

irb(main):004:0>

That’s the payload we need to supply to the REST call. Note that the JSON we create
is submitted as the “:payload” parameter to the REST call. This should look
somewhat familiar:

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :payload => {"key" => "role", "value" => "web"}.to_json,

 :method => :post,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

When you execute the statement above, you receive some JSON back from the API in
response to your POST (see below). The JSON you receive back should look almost
exactly like what we extracted in the previous chapter. The API returns the new
Label object with some additional fields filled in (the key and value fields, which we
supplied, of course, as well as the HREF that was assigned and some ownership and
date values).

As your scripts get more advanced, you’ll find that it’s worthwhile to parse and store
data from API calls for later use. For example, storing the returned HREF along with
the type and name of the Label saves you the effort of having to look that data up
next time you need it in your script (to use a newly-created Label on a Workload, for
example). Note that you can only create a given Label once. If you try to create
another with the same type (key) and name (value), the API call fails with an error
(and not a particularly useful error, at that). Below is a success, then failure (due to
duplicate Labels). Obviously, as you progress in your script writing, you’ll want to
handle these errors and take appropriate action. The first time, it works as expected:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 34

jfrancis@hoss ~/api $./api_lesson_3.rb

{"href":"/orgs/9/labels/1124","key":"app","value":"test14","created_at":"2

017-05-11T16:36:08.852Z","updated_at":"2017-05-

11T16:36:08.852Z","created_by":{"href":"/users/23"},"updated_by":{"href":"

/users/23"}}

jfrancis@hoss ~/api $

The second time, we get an error:

jfrancis@hoss ~/api $./api_lesson_3.rb

/home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/gems/2.4.0/gems/rest-client-

2.0.2/lib/restclient/abstract_response.rb:223:in

`exception_with_response': 406 Not Acceptable (RestClient::NotAcceptable)

 from /home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/gems/2.4.0/gems/rest-

client-2.0.2/lib/restclient/abstract_response.rb:103:in `return!'

 from /home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/gems/2.4.0/gems/rest-

client-2.0.2/lib/restclient/request.rb:809:in `process_result'

 from /home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/gems/2.4.0/gems/rest-

client-2.0.2/lib/restclient/request.rb:725:in `block in transmit'

 from

/home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/2.4.0/net/http.rb:877:in

`start'

 from /home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/gems/2.4.0/gems/rest-

client-2.0.2/lib/restclient/request.rb:715:in `transmit'

 from /home/jfrancis/.rbenv/versions/2.4.0/lib/ruby/gems/2.4.0/gems/rest-

client-2.0.2/lib/restclient/request.rb:145:in `execute'

 from ./api_lesson_3.rb:20:in `<main>'

jfrancis@hoss ~/api $

The API returns a 406 “Not Acceptable” response. Understanding these errors is not
intuitively obvious, but you’ll get the hang of parsing errors as you progress (and the
codes that the PCE returns are all documented in the Illumio REST API Guide). In
this case, the 406 error is referring to the attempt to create a duplicate Label.

We’ve got all the pieces now to create a useful script to build Labels for us. In the
next chapter, we’ll do exactly that.

The source code for this chapter can be found in Chapter 4 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 35

Chapter 5: From Spreadsheets to Labels

This chapter will expand on the last, and is an example of the first

truly useful tool we’ll write. Rather than adding a single hard-coded

Label using the Illumio API, the code in this chapter will load a list of

Label names and types from a spreadsheet, then create a Label for

each line in the spreadsheet using the Illumio REST API.

This chapter will require a new Ruby gem (called “csv”) and will

require a file of CSV data representing the Labels to be created. This

file can be created manually using a text editor, but is easier to create

using Excel or one of the open source spreadsheets such as

Open Office.

Let’s start with the CSV file. As stated above, this is most easily created using a
spreadsheet, though you can certainly create a CSV file using the text editor of your
choice. In this tutorial, we’ll do it the easy way, using Excel, then exporting to CSV.
The spreadsheet will be very simple, containing only two columns: “type” and
“name”. The “type” column will contain the types “role”, “app”, “env”, and/or “loc”.
The “name” column will contain the name of the desired new Label.

For this very simple example, I’ve chosen to forgo column names at the tops of the
columns, as this is data we’d have to later remove in our code (in order to prevent
attempting to create a Label with the type “type” and name “name”). More advanced
code could automatically detect and discard column header names. In my
spreadsheet, I chose to create one Label of each of the four types with descriptive
names (to help ensure that the type matches the name and easily find bugs in my
program). My spreadsheet looks like this:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 36

While there are certainly ruby gems (libraries) capable of reading raw Excel
spreadsheets, we’re going to keep this simple, and export the spreadsheet as CSV
data, as CSV data is considerably easier to parse than an xls/xlsx file. Exporting a
spreadsheet as a CSV varies depending what spreadsheet program (and what
version) you’re using, but for Excel, you save your spreadsheet as a CSV by clicking
“File” then “Save As…”. Name the file “labels”, and choose the file format. Don’t
choose anything with “UTF-8” in the “File Format” field. We want the output to be
plain, straight ASCII:

Once created, copy the labels.csv file to the same directory where you’ve created
your scripts, as the simple script we’re writing won’t be smart enough to look for
the input file anywhere but the current directory (expanding this feature, along with
doing some error checking on both the spreadsheet data and the API results, would
be a great exercise to increase the utility of the script).

Let’s start with a few lines of Ruby to open the file, read the records, and break them
into their constituent pieces. While we could probably get away with using split() to
break apart our CSV lines, we’ll use the csv gem, as that’s what it’s designed for (and
it handles some oddball use cases, like having commas embedded in the text):

require ‘csv’

File.open("labels.csv").each do |line|

 CSV.parse(line) do |stuff|

 puts "type: #{stuff[0]} name: #{stuff[1]}"

 end

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 37

This is just a quick loop to read in the data. It opens the input file (remember, it’s
only smart enough to look in the current directory, and it requires the name to
match perfectly), then iterates through each line of the file, one at a time. For each
line, the csv Ruby gem breaks the line into “chunks,” based on the commas, and
stores the resulting data into the array “stuff”. As there are two items per line (at
least there are supposed to be), stuff should contain the type in stuff[0], and the
name in stuff[1]. As before, this is a great place to add some error checking in future
versions of this script. It’s probably also wise to check that type is one of the four
allowed types (“role”, “app”, “env”, or “loc”), else the API insert will fail. When we
run this code, we get the following output:

jfrancis@hoss ~/api $./api_lesson_4.rb

type: role name: test role 1

type: app name: test app 1

type: env name: test env 1

type: loc name: test loc 1

jfrancis@hoss ~/api $

Looks good, yes? Now it’s time to combine this code with the code from the previous
chapter, to generate Labels. While we’re at it, we’re going to make the call and parse
the resulting JSON all in one go, rather than as separate steps. We’ll also print the
JSON returned by the API for each Label, just as a sanity check. In more advanced
code, you could parse the returned JSON and make note of the returned HREF, for
example:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 38

File.open("labels.csv").each do |line|

 CSV.parse(line) do |stuff|

 json = JSON.parse(

 RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :payload => {"key" => stuff[0], "value" =>

stuff[1]}.to_json.to_str,

 :method => :post,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute())

 puts json

 end

end

And there you have it. When you run the code, you get something along the lines of
the following output:

jfrancis@hoss ~/api $./api_lesson_4.rb

{"href"=>"/orgs/9/labels/1125", "key"=>"role", "value"=>"test role 1",

"created_at"=>"2017-05-11T19:03:25.359Z", "updated_at"=>"2017-05-

11T19:03:25.359Z", "created_by"=>{"href"=>"/users/23"},

"updated_by"=>{"href"=>"/users/23"}}

{"href"=>"/orgs/9/labels/1126", "key"=>"app", "value"=>"test app 1",

"created_at"=>"2017-05-11T19:03:25.503Z", "updated_at"=>"2017-05-

11T19:03:25.503Z", "created_by"=>{"href"=>"/users/23"},

"updated_by"=>{"href"=>"/users/23"}}

{"href"=>"/orgs/9/labels/1127", "key"=>"env", "value"=>"test env 1",

"created_at"=>"2017-05-11T19:03:25.651Z", "updated_at"=>"2017-05-

11T19:03:25.651Z", "created_by"=>{"href"=>"/users/23"},

"updated_by"=>{"href"=>"/users/23"}}

{"href"=>"/orgs/9/labels/1128", "key"=>"loc", "value"=>"test loc 1",

"created_at"=>"2017-05-11T19:03:25.797Z", "updated_at"=>"2017-05-

11T19:03:25.797Z", "created_by"=>{"href"=>"/users/23"},

"updated_by"=>{"href"=>"/users/23"}}

jfrancis@hoss ~/api $

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 39

If you log into your PCE and have a look, you should see the four new Labels you just
created:

Congratulations! You’ve just automated a fairly tedious task (at least if you’re doing
dozens or hundreds of Labels) using the API. In following chapters, we’ll look at
some more complex issues, such as asynchronous system calls and creating and
labeling Workloads.

The source code for this chapter can be found in Chapter 5 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 40

Chapter 6: Asynchronous API Calls

Up until now, we’ve been using Synchronous API calls. This is fine for

many tasks, but if you expect a result set back from an API call that

results in more than 500 items, you’ll need to switch to Asynchronous

API calls. This chapter is about when and how to make these calls.

In Chapter 3: Extracting Data, we learned that when doing a GET via the API, the
maximum number of results returned is 500. If there are more than 500 of the item
being queried in the system (Workloads, Rulesets, Labels, etc.), only the first 500 are
returned. This is to prevent excessive load on the Policy Compute Engine, as doing
large queries on the back-end database consumes a lot of system resources, and it’s
easy to cause performance issues when executing large numbers of API calls that
return large datasets. Excessive load, in turn, causes updates to the firewall policy
for the Workloads in your network to slow down, resulting in a less secure network.

So how do we solve this? The Illumio answer is asynchronous API calls.
Synchronous API calls (the ones we’ve used so far) are analogous to buying fries at
your local McDonalds drive-through. You drive up to the window, order your fries,
receive your fries, and drive away happily munching your wonderful salty fried
potato snack. It was a simple, quick transaction where you asked for what you
wanted, and immediately received it.

Asynchronous API calls can be compared with dropping your dry cleaning at your
local shop. You drop off your shirts, and you’re given a ticket to claim them when
they’re done. The person behind the counter gives you an estimate of when your
order will be ready, along with a phone number to check their status before you
drive all the way over. Once the estimated time has passed, you call the dry
cleaners, verify that your order is done, then return to the shop for your nice clean
shirts.

Normally, you make a call to the API, and a short time later (typically measured in
tens of milliseconds), the result of your call is returned. With asynchronous calls, it’s
a bit different. You make a call with a special header flag requesting an
asynchronous result, and instead of the result of your query, you get back a special
URL. You then periodically check the status of that URL while your query runs at a
reduced priority in the background (allowing for normal high-speed processing of
security policy in the Policy Compute Engine). Once your query is done, the result of
checking the special URL will be yet another URL. If you do a GET on this third URL,
you get the result for the original query.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 41

Granted, this is a bit more work than a simple call, but this method allows you to
make large queries while maintaining system performance, and putting all of this
code into a function hides the complexity, making asynchronous API calls just as
easy as synchronous calls (though considerably slower).

There are seven items in the current version of the PCE that can be retrieved
asynchronously, per the Illumio REST API Guide: Workloads, Rulesets, Labels, Label
Groups, Services, IP Lists, and Pairing Profiles. This may change with future versions
of the PCE as new features are added. It’s always wise to check both the Release
Notes and the current API REST Guide for each PCE version to see what has
changed.

To do an async API call, use the same URL as a standard synchronous query, with
the addition of a header of “Prefer: respond-async”. In this chapter, we’ll write a
function to make standard synchronous queries (making queries like in the previous
postings simpler), then build on top of that to also be able to do asynchronous
queries.

In this example, let’s assume that there are more than 500 Labels, and that we want
to retrieve the whole set, not just the first 500. The first question is, how do we
know if there are more than 500 results? One strategy is to simply use
asynchronous calls all the time. While this does technically work, it makes your code
slow, as asynchronous queries are considerably slower (by at least an order of
magnitude, sometimes more) than standard synchronous queries. So you need to be
adaptable.

Unfortunately, there’s no flag that comes back with the results from a GET query
that tells you there is more data available than what was returned. One strategy is
whenever one of the seven queries above returns 500 or more results, to set a flag in
your code and switch to doing async queries for that category of objects. If the
number of results from an asynchronous query drops below some value, say 475
results, then change the flag back to doing synchronous queries for that particular
class of objects. It’s more bookkeeping overhead to keep track of, but it keeps your
code faster than simply doing the safe thing and relying on either type of query for
everything.

The standard query to return all Labels (assuming the same first few lines of code
we’ve been using in previous postings) is:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 42

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

Turning this into an async query requires the addition of one additional

header, “Prefer: respond-async”:

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

When making an asynchronous query, there are additional steps involved in getting
your results. The process is detailed below, but the concept is simple. You first make
a query using the same format as always, but with the additional header “Prefer:
respond-async” telling the API you’d like this to be an asynchronous query. The API
then returns a URI that provides the status of your query (among other things). You
then periodically do a GET (using a standard synchronous query) on that URI until it
either succeeds or times out (fails). Once it succeeds (which can take multiple
seconds for a query that returns thousands of results), the API call then returns yet
another URI, which you then do a synchronous GET on to get your final results. This
allows the query to run to completion at a lower priority, keeping the load on the
Policy Compute Engine lower.

The initial asynchronous API call returns three fields we care about, “Status”,
“Location”, and “Retry-After”. The first tells us whether or not the request was
successfully accepted (the response will be “202 Accepted” if it is).

The second is the URI to poll to find out if the query is complete. The third is a
suggested amount of time (in seconds) to wait before making the first follow-up
query to check for your data. The catch is, rather than being returned as JSON in the
body of the reply, these three variables are all returned as part of the header of the

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 43

result. Meaning it’s just a bit harder to get at the data and will require a new trick. If
we look at the headers, we see the following:

[2] pry(main)> response.headers

=> {:transfer_encoding=>"chunked",

 :status=>"202 Accepted",

 :location=>"/orgs/9/jobs/603e893e-8a20-45f8-986e-5d65ed9ed946",

 :retry_after=>"5",

 :x_request_id=>"60875e3d-e02d-4079-b4f9-7f86a37467a8",

 :date=>"Tue, 16 May 2017 19:09:02 GMT",

 :content_encoding=>"gzip",

 :cache_control=>"no-store"}

[3] pry(main)> response.headers[:location]

=> "/orgs/9/jobs/603e893e-8a20-45f8-986e-5d65ed9ed946"

[4] pry(main)> response.headers[:status]

=> "202 Accepted"

[5] pry(main)> response.headers[:retry_after]

=> "5"

[6] pry(main)>

The :status value tells us that our request was successful. The :location value tells us
what URL to poll to let us know when we’re done, and the :retry_after value tells us
to wait an estimated five seconds for a result (you can certainly check prior to five
seconds, as the returned value is nothing more than an estimate, so be prepared to
check more than once in case the estimate is optimistic).

Let’s write some code to wait the suggested amount of time, then poll the specified
URL until it either reads “done” or “failed”. In our example code, we assume that all
queries eventually succeed. In production systems, it’s definitely best practice to
check the return code and handle failure appropriately.

To wait the suggested amount of time, first, we convert the suggested wait time
from a string to an integer, then sleep for that number of seconds. We then loop
until :status indicates the query is done, sleeping for one second between each
query. Finally, we do a GET on the URI where the Policy Compute Engine has stored
our final result:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 44

sleep(response.headers[:retry_after].to_i)

status=""

location=response.headers[:location]

while (status!="done" and status!="failed")

 response = JSON.parse(RestClient::Request.new(

 :url

=>"https://"+pce+":"+port+"/api/v1/"+location,

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute())

 status=response['status']

 puts status

 sleep 1 unless (status=="done" or status=="failed")

end

url=response["result"]["href"]

At this point, the query has either failed, or has produced a result. Let’s go fetch the
contents of the variable url and display the resulting Labels (this code should look
familiar):

response = JSON.parse(RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+url,

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute())

response.each do |resp|

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 45

 puts "href: #{resp['href']}"

 puts "type: #{resp['key']}"

 puts "name: #{resp['value']}"

 puts ""

end

Here’s what running the code looks like:

jfrancis@hoss ~/api $./api_lesson_5.rb

pending

pending

pending

pending

running

running

running

done

href: /orgs/9/labels/1084

type: role

name: Nginx_LB

href: /orgs/9/labels/1087

type: env

name: Development

jfrancis@hoss ~/api $

You’ll notice that the status is “pending” for the first four seconds. This indicates that
the Policy Compute Engine is busy doing something of higher priority than our
query. Our query then starts running, and runs for three seconds before it’s done,
and our results are available to fetch.

That’s it! Now you can do asynchronous queries. In the next chapter, we’ll package
these up for more convenient use.

The source code for this chapter can be found in Chapter 6 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 46

Chapter 7: Cleaning Up Our Code

Functions and objects are fundamental concepts of programming.

Let’s build a few functions to clean up our code to make writing

future code easier.

Before we go any further, let’s stop and clean things up a bit. We’ve learned about
pushing things into the API to create objects in the PCE, and we’ve learned two ways
to pull things out (synchronously and asynchronously). But our code is getting a bit
verbose. Let’s stop and use this chapter to create an object (to hold PCE credentials)
and two functions (one to make standard synchronous API calls, and a second to
make asynchronous GET API calls). This will be a little bit of work, but will collapse
future API calls down to a single line of code. This will make our future code both
easier to read and less likely to contain errors.

First thing, let’s create an object to hold the credentials for a Policy Compute Engine.
This object should contain the URL of the PCE, the port to connect to, your login and
password, and your org_id. In addition, let’s create two object methods. The first,
given the resource you want to access, will return a full URL to connect to, including
the org_href. The second will be the same, but lacking the org_href. Why? Because
some calls require the org_href, and others will use the org_href already embedded
in the HREF we supply to the call (the Illumio REST API Guide will tell you when to
use each).

Here’s a nice Creds object to play with:

class Creds

 attr_accessor :login, :passwd, :pce, :port, :org

 def initialize(login, passwd, pce, org, port=443)

 @login = login

 @passwd = passwd

 @pce = pce

 @port = port.to_s

 @org = org

 end

 def url_with_api(rest)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 47

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1/#{rest}")

 end

 def url_with_org(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1#{@org}/#{rest}")

 end

end

Assuming you keep the first few lines of your code the same (where you specify
login, passwd, etc.), you can create a new credentials object like this, then query the
object for things such as the passwd and the proper URL to fetch Labels:

[1] pry(main)> creds=Creds.new(login,passwd,pce,org_href,port)

=> #<Creds:0x007fee3b914c78

 @login="api_1ea0799f8bd486c8e",

 @org="9",

@passwd="6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

,

 @pce=" illumio.company.com ",

 @port="8443">

[2] pry(main)> creds.login

=> "api_183791c52058d3571"

[3] pry(main)> creds.url_with_org("/labels")

=> "https://illumio.company.com:8443/api/v1/orgs/31/labels"

[4] pry(main)>

Now instead of a bunch of nasty global variables, we can pass a Creds object to the
functions we write to talk to the API, and those functions can get everything they
need from the objects. Cleaner, safer, and less prone to error. Note that there’s code
in there to make sure there’s no double “//” when specifying the resource (i.e., you
can specify either “labels” or “/labels”, and the method will do the right thing).

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 48

The first function, doing a synchronous API call, is pretty straightforward. It’s
exactly what we’ve been doing all along, but we’re going to package it up in a nice
neat function. We already know we need to pass the Creds object, but what else?
Happily, the answer is “not much.” We’ll need to specify the type of API call this is
(:get, :put, :post, or :delete). We’ll call that variable “type”. Next, we need to know
what resource we want to manipulate in the API. For example, to fetch all of the
Labels, the resource is “/labels”. We’ll call this “resource”. We need to know if the
final URL should include the org_href or not, so we’ll have a Boolean value of “nil” or
“true” for our variable “org” (“true” means include it, and “nil” means don’t). Finally,
there’s an optional payload. If there is no payload, you can supply a “nil” or simply
don’t specify the final parameter.

Here’s a simple sync API call function:

def sync_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => type,

 :payload => payload,

 :user => creds.login,

 :password => creds.passwd,

 :verify_ssl => false,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

 if (response.to_s() != "")

 return(JSON.parse(response))

 else

 return "ok"

 end

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 49

Now we can make calls to the API in a much easier manner. For example, to fetch the
Labels, you simply call:

sync_api(creds,:get,”/labels”,true)

In return, you get a parsed JSON data structure with the data you asked for.

The asynchronous API call is a bit more complex. It’s what we did before when we
learned about asynchronous API calls, but a bit shorter, because we’re at least
partially able to take advantage of our new sync_api() call to shorten and simplify
the code:

def async_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => :get,

 :user => creds.login,

 :password => creds.passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

 sleep(response.headers[:retry_after].to_i)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 50

 monitor_url = response.headers[:location]

 status = ""

 while (status != "done" and status != "failed")

 response = sync_api(creds,:get,monitor_url,nil)

 status = response['status']

 sleep 1 unless (status == "done" or status == "failed")

 end

 return (sync_api(creds,:get,response["result"]["href"],nil))

end

We still need to make the initial API call in this new function the long way because
we have to do two things different: we have to specify an extra header to request an
async reply, and we have to parse the returned headers to find out where to check
for status (normally, we discard the returned headers). While we could certainly do
this with extra parameters to the sync_api() call, in the interest of keeping the rest of
our code a bit cleaner, we’ll take the hit and do one call the hard way here.

While this was a bit of a diversion from learning the API itself, we’ve now got some
useful functions. For example, you can now get a list of Labels in two ways:

labels = sync_api(creds,:get,"labels",true)

or

labels = async_api(creds,:get,"labels",true)

The first does a synchronous API call, and the second does an asynchronous call.

In the next chapter, we’re going to use our new functions to do something a little
more complex than we’ve done before. We’re going to build some Unmanaged
Workloads. This is more complex because it will involve multiple API calls, as
Unmanaged Workloads need to have Labels. The JSON that’s supplied for
Unmanaged Workloads is also a bit more complex, so we’ll explore ways to simplify
things.

The source code for this chapter can be found in Chapter 7 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 51

Chapter 8: Creating Unmanaged Workloads

Though it was small and simple, what we built in Chapter 5: From

Spreadsheets to Labels was our first real tool. In this chapter, we’re

going to build our first real, full application that leverages the API.

Creating Unmanaged Workloads is a major task with most Illumio

deployments. In a typical deployment, there are often twice as many

Unmanaged Workloads as there are Managed. This translates to

potentially thousands of mouse clicks. While we do already have a

full-featured command line tool that uses the API to solve this

problem (as well as many others) called the Go Absorption Toolkit

(available for free download from the Illumio Support Portal), the

purpose of this exercise is to learn by doing.

Our goal for this chapter is to take an Excel spreadsheet filled with Workload data
and turn it into properly Labeled Unmanaged Workloads in the PCE. For each
Unmanaged Workload (which I’ll refer to as a “UMW” from here on out to save
space), we’ll need a name, a hostname (which can optionally be the same as the
name, or empty), an IP address, and zero to four Labels (for Role, Application,
Environment, and Location). As with our earlier Chapter 5 application, we’ll skip
putting Labels at the top of columns to simplify our code, but the columns are Name,
Hostname, IP, Role, App, Env, Loc:

For any (or all) Label(s) you want empty, simply leave the space blank. Remember
to export your Excel spreadsheet to CSV, but do not select the UTF-8 variant of CSV,
or your file will be unreadable by this script.

We’re going to try to be smart about this. For any Label specified that does not
already exist, we’ll create and use a new one. If a Label already exists in the PCE,
however, we’ll use the old one. Note that capitalization is critical; “Web” is not the
same as “web”. As you can see from the spreadsheet above, we’re going to create
five machines with various roles, but all parts of the Bazinga Application are in Pre-
Production on Earth.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 52

We’re going to use our Creds object and two functions from Chapter 7 for accessing
the API to build on top of. In addition, we’ll need a few new functions before we
start. The first thing we’ll need is a list of all of the Labels that already exist in the
PCE. That way, we’ll know what Labels we can re-use, and what Labels we’ll need to
create from scratch. We’ll need a function to grab and store all of the existing Labels,
and we’ll also need a function to create new Labels. First, pull out your code from
last time, save it into a new file called api_lesson_7.rb, and keep everything down to
(and including) the line where you create the Creds object.

First, let’s write some code to pull out the existing Labels. We’re going to store the
Label data in a hash of hashes, called “labels”. The hash inside of “labels” will contain
four hashes, called “role”, “app”, “env”, and “loc”. These, in turn, will contain a key
value of the name of the Label, and a value of the HREF of the Label. This makes it
easy to find a Label’s HREF (which we’ll need to construct UMWs) with nothing but
a type and name:

[3] pry(main)> labels['env']['Production']

=> "/orgs/31/labels/1302"

[4] pry(main)>

Here’s a function that pulls the Label data from the API, and returns a hash of hashes
which we can assign to “labels”:

def get_all_labels(creds)

 response = sync_api(creds,:get,"/labels",true)

 if (response.length == 500)

 response = async_api(creds,:get,"/labels",true)

 end

 labels = Hash.new()

 labels['role'] = Hash.new()

 labels['app'] = Hash.new()

 labels['env'] = Hash.new()

 labels['loc'] = Hash.new()

 response.each do |resp|

 if (resp['key'] == "role")

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 53

 labels['role'][resp['value']] = resp['href']

 end

 if (resp['key'] == "app")

 labels['app'][resp['value']] = resp['href']

 end

 if (resp['key'] == "env")

 labels['env'][resp['value']] = resp['href']

 end

 if (resp['key'] == "loc")

 labels['loc'][resp['value']] = resp['href']

 end

 end

 return(labels)

end

As you can see, the code first constructs the hash of hashes, then iterates through
the data returned by the API. For each returned Label, it determines which of the
four types the Label is, then stores it in the appropriate hash. At the end, the entire
hash of hashes is returned. While there are more efficient methods of doing this, this
makes for clean code that’s easy to read, and this process will only ever be done
once per run of the program, so memory utilization and garbage collection is the
least of our worries. Note that we make a synchronous call to the API to get our data.
If exactly 500 items are returned, we make the bet that there may very well be more
than 500, and do a second, asynchronous call to fetch the full data set. You could
simply change the code to always take the safe bet and do an async call, but it will
run much more slowly if you have fewer than 500 Labels in your PCE.

We also need a function to create a new Label. This one is trivial:

def create_label(creds,type,name)

 return(

 JSON.parse(sync_api(creds,:post,"/labels",true,

 {"key" => type, "value" =>

name}.to_json).to_json))

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 54

In this function, we simply call the API with the two necessary parameters (name
and type), plus the proper API credentials.

Next, we need a function to create Unmanaged Workloads. The secret formula for
the required JSON is documented in the Illumio REST API Guide, but the code below
gives you a pretty good idea of what you’ll need. This function will require
credentials, a name, a hostname (can optionally be the same as name or blank), an
IP address, and zero to four Labels, specified by their HREFs, in any order.

The code first checks to see what Labels, if any, you’ve supplied, then creates an
array of hash values to include as part of the JSON we’ll later feed to the API. Then
we simply create a blob of JSON with all the right fields filled out and submit it to the
API:

def create_umw(creds,name,hostname,ip,lab1=nil,lab2=nil,lab3=nil,lab4=nil)

 lab = Array.new()

 lab.push ({"href" => lab1}) if (lab1)

 lab.push ({"href" => lab2}) if (lab2)

 lab.push ({"href" => lab3}) if (lab3)

 lab.push ({"href" => lab4}) if (lab4)

 wl = {"name" => name,

 "hostname" => hostname,

 "public_ip" => ip,

 "interfaces" =>

 [{"name" => "eth0",

 "address" => ip,

 "cidr_block" => 32,

 "link_state" => "up"}],

 "online" => true,

 "labels" => lab }

 return(

 JSON.parse(

 sync_api(creds,:post,"/workloads",true,wl.to_json)))

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 55

That pretty much sums up the required new functions. Next, we’ll read the data
from the CSV file, and create that which needs creating. First step, though, is to use
our shiny new function to pull the Label data and suck in all the Labels. Put this right
below creating your Creds object:

creds = Creds.new(login,passwd,pce,org_href,port)

labels = get_all_labels(creds)

Now we’ve got Label data to work with, and credentials to talk to the PCE.

This next bit of code gets a little bit hairy, so let’s talk through the process before we
look at too much code. First thing we do is open the file and read it line by line, first
splitting each line into it’s constituent fields using the CSV gem, and finally assigning
each line’s values to a set of variables that are easier to remember than referring to
the fields by names like “stuff[3]”. As with our earlier code that reads CSV files, we
have hard-coded the name to “workloads.csv”, which must be in the current
directory. It’s a useful exercise for the reader to make this more flexible:

File.open("workloads.csv").each do |line|

 CSV.parse(line) do |stuff|

 name = stuff[0]

 hostname = stuff[1]

 ip = stuff[2]

 role = stuff[3]

 app = stuff[4]

 env = stuff[5]

 loc = stuff[6]

Now we head into the loop and check each Label to see if it already exists. If it does,
the corresponding variable (role, for the first case) is set to the HREF for the
specified role Label. On the other hand, if this role does not already exist, we use our
new Label creation function and create it, then store the HREF of the brand new
Label in the variable “role”, as well as adding it to the hash of known Labels (for use
next time this Label is required). Finally, if there is no role Label, “role” is set to nil
so it will be skipped later on down the code:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 56

 if (role != nil)

 if (labels['role'][role])

 puts "Role #{role} already exists."

 role = labels['role'][role]

 else

 puts "Creating role #{role}..."

 href = create_label(creds,"role",role)['href']

 labels['role'][role] = href

 role = href

 end

 else

 puts "Role not specified."

 role = nil

 end

Now we do this three more times in line, for each of app, env, and loc. At the end of
these four tests, we have the role, app, env, and loc variables set to the HREF of their
respective Labels (or to nil).

Last, but certainly not least, we create the Unmanaged Workload using all of the
data we’ve accumulated:

 wl = create_umw(creds,name,hostname,ip,

 role,app,env,loc);

And that’s it. We can now create Unmanaged Workloads by the thousands. Here’s a
sample run of the code:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 57

jfrancis@hoss ~/src $./api_lesson_7.rb

Creating role web...

Creating app bazinga...

Creating env pre-production...

Creating loc earth...

Creating unmanaged workload foo...

Creating role middleware...

App bazinga already exists.

Env pre-production already exists.

Loc earth already exists.

Creating unmanaged workload bar...

Creating role profit...

App bazinga already exists.

Env pre-production already exists.

Loc earth already exists.

Creating unmanaged workload baz...

Creating role database...

App bazinga already exists.

Env pre-production already exists.

Loc earth already exists.

Creating unmanaged workload qux...

Role database already exists.

App bazinga already exists.

Env pre-production already exists.

Loc earth already exists.

Creating unmanaged workload quux...

jfrancis@hoss ~/src $

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 58

You’ll see that the code is now “smart” enough to re-use pre-existing Labels, and
create new ones when needed. If you look in your PCE after this code was run, you’ll
see something like this:

The source code for this chapter can be found in Chapter 8 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 59

Chapter 9: Quarantining Workloads

In this chapter, we’re going to talk about how to quarantine a

Workload. When anomalous behavior is noted in your network

(whether by wild new red lines in Illumination, reports by a user, or

information from a malware detection product), it’s generally

considered to be a best practice to isolate that machine from the rest

of your data center to prevent the potential spread of infection. In the

Olden Days of Networking, that usually meant removing power to the

machine, pulling it’s LAN cable, and/or disabling the switch port the

machine was plugged into. In the new Enlightened Age of Illumio, you

have a new option: you can quarantine the Workload, and isolate it

from the rest of your network using firewalls, but still allow carefully

restricted remote access for cleaning, repairing, or debugging the

affected machine.

In order to quarantine a Workload, you need an Application Group to move the
Workload into (i.e., change it’s Labels to match those of a Quarantine group). This
Application Group (the Quarantine group) should have a corresponding Ruleset
that, as an example, allows zero traffic in or out, other than incoming connections
(perhaps from a small number of carefully specified workstations) on a few limited
ports, perhaps Windows Remote Desktop and ssh.

Changing the Labels on an infected machine immediately causes that machine to
inherit a new policy, disallowing outgoing communications, and only listening to
ports necessary to debug and analyze the problem. Even more importantly, it
immediately updates the policy on every other system in your data center that runs
the Illumio VEN to block all attempts to communicate with the infected system. It’s
almost like pulling the LAN cable, but can be done with a few API calls to the Illumio
Policy Compute Engine. And that is our task for today.

Your first task is to create the Labels you’d like to use for your quarantine zone.
There are any number of ways to go about this, but for this example, we’re going to
create Application, Environment, and Location Labels all with the same name,
“quarantine”. This task only needs to be performed once for the life of the PCE.

This will result in an application bubble for our quarantined Workloads, though it
will not show on the screen in Illumination until there is at least one Workload with
those Labels. The code itself doesn’t do this, as it’s assumed that you’ll want to also

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 60

create a Ruleset for the quarantine zone with a few Rules allowing specific system
management (rdp/ssh) traffic inbound.

You’ll want to create this Ruleset (which I called “quarantine” in my example) with
the scope of your quarantine zone (in this example, “quarantine” “quarantine”
“quarantine”). In my example, I added two Rules. The first will allow traffic
(preferably from a small number of systems used to diagnose bad machines) to talk
to the quarantined Workloads on TCP 3389 and UDP 3389. This will allow Remote
Desktop, assuming the machines are running Windows. The second should allow
TCP 22 to allow for logging into machines running Linux. Here’s what my example
looks like in the PCE web console:

From here, we’ll proceed with the code we wrote in the last installment for creating
the Unmanaged Workloads. We’ll be re-using some of that code, and adding a few
new things.

Just like last time, we’ll need a list of all existing Labels (so that we can find the
quarantine Labels), but we’ll also now need a list of all Workloads. We’ll need to
scan through all of the Workload data in order to find which of those Workloads has
the IP address that was specified as the machine to be quarantined. So let’s start
with a new function to fetch all of the Workloads, then store them in a hash indexed
by HREF:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 61

def get_all_workloads(creds)

 workloads = Hash.new()

 response = sync_api(creds,:get,"/workloads",true)

 if (response.length == 500)

 response = async_api(creds,:get,"/workloads",true)

 end

 response.each do |wl|

 workloads[wl['href']] = wl

 end

 return(workloads)

end

As with our function to fetch Labels, we automatically switch from a sync API call to
an async call if 500 results are returned, making the assumption that if there are
500, there may be more. We then iterate through the list, adding each Workload to a
hash that will be returned to the user, using the HREF of the Workload as the key,
and the parsed JSON data as the value. This function is called very much like the
corresponding Label function:

workloads = get_all_workloads(creds)

Now we need a function to match a specified IP address with any and all potential IP
addresses in a Workload. While we often think of a system as having a single IP
address, this is often not the case. It’s quite common for a server (or workload) to
have more than one network interface, each with a different address, as well as
having virtual network interfaces on the physical interfaces. We need to check each
of these for a match. Let’s start with the JSON data returned for a single network
device, and see where and how we find this data:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 62

[2] pry(main)> workloads["/orgs/31/workloads/1a81d99f-1196-4377-8ecb-

6095d7fed168"]

=> {"href"=>"/orgs/31/workloads/1a81d99f-1196-4377-8ecb-6095d7fed168",

 "deleted"=>false,

 "name"=>nil,

 "description"=>nil,

 "hostname"=>"hrm-web-prod3",

 "service_principal_name"=>nil,

 "public_ip"=>"54.153.21.11",

 "external_data_set"=>nil,

 "external_data_reference"=>nil,

 "interfaces"=>

 [{"name"=>"eth0.public",

 "address"=>"54.153.21.11",

 "cidr_block"=>32,

 "default_gateway_address"=>nil,

 "link_state"=>"up",

 "network_id"=>46,

 "network_detection_mode"=>"manual",

 "friendly_name"=>nil},

 {"name"=>"eth0",

 "address"=>"10.10.100.5",

 "cidr_block"=>nil,

 "default_gateway_address"=>"10.0.1.255",

 "link_state"=>"up",

 "network_id"=>46,

 "network_detection_mode"=>"single_private_brn",

 "friendly_name"=>"Friendly eth0"}],

 "ignored_interface_names"=>[],

 "service_provider"=>"amazonaws.com",

 "data_center"=>"us-west-2.amazonaws.com",

 "data_center_zone"=>"us-west-2c",

 "os_id"=>"ubuntu-x86_64-precise",

 "os_detail"=>"agent simulator 2017-01-08 05:46:38 +0000",

 "online"=>true,

 "labels"=>[{"href"=>"/orgs/31/labels/1296"},

{"href"=>"/orgs/31/labels/1342"}, {"href"=>"/orgs/31/labels/1302"},

{"href"=>"/orgs/31/labels/1339"}],

 "services"=>{},

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 63

 "agent"=>

 {"config"=>{"log_traffic"=>false, "visibility_level"=>"flow_summary",

"mode"=>"enforced"},

 "href"=>"/orgs/31/agents/28618",

 "status"=>

 {"uid"=>"0289091c-9828-4eae-aa4e-7777c58780b5",

 "last_heartbeat_on"=>"2017-05-19 16:31:24.657003",

 "instance_id"=>"i-01234568",

 "managed_since"=>"2017-03-30T03:43:18.161418Z",

 "fw_config_current"=>true,

 "firewall_rule_count"=>12345,

 "security_policy_refresh_at"=>"2015-04-27T16:13:00Z",

 "uptime_seconds"=>"6",

 "status"=>"active",

 "agent_version"=>"1.12.0-20140729143905",

 "agent_health_errors"=>{"errors"=>[], "warnings"=>[]},

 "agent_health"=>[]}},

 "created_at"=>"2017-03-30T03:43:18.157839Z",

 "created_by"=>{"href"=>"/orgs/31/agents/28618"},

 "updated_at"=>"2017-05-11T23:25:01.227857Z",

 "updated_by"=>{"href"=>"/orgs/31/agents/28618"}}

[3] pry(main)>

That’s a lot of data, but you’ll notice there are two places where IP addresses are
specified. The first is in a key called “public_ip”. This is the network address that’s
used by the device to talk to the Policy Compute Engine, and the address this
particular Workload is known by. This address is certainly worth testing. Here’s
how we grab it:

[3] pry(main)> workloads["/orgs/31/workloads/1a81d99f-1196-4377-8ecb-

6095d7fed168"]['public_ip']

=> "54.153.21.11"

[4] pry(main)>

However, it’s not the only address of the system. If you look further down the
returned data, there’s a key called “interfaces” which contains an array with one
entry per physical or virtual interface on the device. Within this hash is a key called

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 64

“address”. Here’s the hash, and how we grab the IP of the first interface (obviously,
we’ll iterate through all interfaces in our “real” code):

[4] pry(main)> workloads["/orgs/31/workloads/1a81d99f-1196-4377-8ecb-

6095d7fed168"]['interfaces']

=> [{"name"=>"eth0.public",

 "address"=>"54.153.21.11",

 "cidr_block"=>32,

 "default_gateway_address"=>nil,

 "link_state"=>"up",

 "network_id"=>46,

 "network_detection_mode"=>"manual",

 "friendly_name"=>nil},

 {"name"=>"eth0",

 "address"=>"10.10.100.5",

 "cidr_block"=>nil,

 "default_gateway_address"=>"10.0.1.255",

 "link_state"=>"up",

 "network_id"=>46,

 "network_detection_mode"=>"single_private_brn",

 "friendly_name"=>"Friendly eth0"}]

[5] pry(main)> workloads["/orgs/31/workloads/1a81d99f-1196-4377-8ecb-

6095d7fed168"]['interfaces'][0]

=> {"name"=>"eth0.public",

 "address"=>"54.153.21.11",

 "cidr_block"=>32,

 "default_gateway_address"=>nil,

 "link_state"=>"up",

 "network_id"=>46,

 "network_detection_mode"=>"manual",

 "friendly_name"=>nil}

[6] pry(main)> workloads["/orgs/31/workloads/1a81d99f-1196-4377-8ecb-

6095d7fed168"]['interfaces'][0]['address']

=> "54.153.21.11"

[7] pry(main)>

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 65

And there it is, the address of the first interface. One of the actual enumerated
interfaces should be a duplicate of the Public IP, but it’s best to check all of them,
regardless, just so we don’t miss anything.

Now that we know how to get at the IP addresses, let’s write a function that, given a
specific IP and a list of all Workloads, returns an array of Workload HREFs with an
interface that matches the address. Why an array instead of a single HREF? Because
mistakes happen, and it’s not impossible to have two machines with the same IP
address. This is usually a mistake, and not deliberate design, but either way, it’s
impossible to know which of multiple Workloads is the “right” one, so we simply
return all of them.

We’ll create an array to return, then iterate through each Workload. For each
Workload, we’ll check for a match with the Public IP, then iterate through all
existing interfaces looking for matches. Any time a match is found, the HREF is
pushed into the array. At the very end, we return a de-duplicated list of matching
HREFs (de-duplicated, because it’s likely that a match will be found in both the
Public IP and list of interfaces for any given Workload):

def find_ip_in_workloads(ip,workloads)

 matches = Array.new()

 workloads.keys.each do |wl|

 if(workloads[wl]['public_ip'] == ip)

 matches.push(wl)

 end

 workloads[wl]['interfaces'].each do |iface|

 if(iface['address'] == ip)

 matches.push(wl)

 end

 end

 end

return(matches.uniq())

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 66

When this function is run, it works as expected, returning an array containing the
HREF for a single workload:

 [7] pry(main)> find_ip_in_workloads("10.10.100.5",workloads)

=> ["/orgs/31/workloads/1a81d99f-1196-4377-8ecb-6095d7fed168"]

[8] pry(main)>

The code needs to know the Application, Environment, and Location Labels we’re
using for our Quarantine Zone. There’s no particular need to call them “quarantine”,
though that’s what we’ll do here, just for simplicity:

qapp = "quarantine"

qenv = "quarantine"

qloc = "quarantine"

So now that all of the various pieces are in place, let’s talk about what we’re actually
going to do with this script. First, we’ll read in all of the Labels from the PCE. We
search these Labels to find the HREFs of the Labels to be applied to a Workload
being placed into quarantine. Next, we read in all of the Workloads from the PCE.
We then search all Workloads for the specific IP address of the machine to be
quarantined, and return that Workloads (or Workloads) as an array of HREFs,
assuming the Workload already exists. Finally, we iterate over the list of Workload
HREFs (which will normally be a single Workload), and apply the new quarantine
Labels to it. Assuming the Workload doesn’t already exist, we’ll create it as an
Unmanaged Workload, with the appropriate quarantine Labels in place.

Let’s get to it! Let’s first grab the Labels and find the HREF(s) we need, and exit if
we’re unable to locate them:

labels = get_all_labels(creds)

qapp_href = labels['app'][qapp]

qenv_href = labels['env'][qenv]

qloc_href = labels['loc'][qloc]

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 67

unless(qapp_href and qenv_href and qloc_href)

 puts "Unable to locate specified quarantine labels."

 exit(1)

end

Now let’s load all of the Workloads and find the “bad” one to be quarantined. In our
example code, we specify the IP address of the miscreant machine at the top of our
script. In the real world, you’d probably pass this another way, most likely as a
command-line parameter:

infected_ip = "10.10.10.10"

workloads = get_all_workloads(creds)

infected = find_ip_in_workloads(infected_ip, workloads)

Before we start searching, let’s go ahead and build the array we’ll use to specify the
Labels when we make that API call. Regardless of whether the Workload already
exists, or we have to create it from scratch, we’ll need this data:

lab = Array.new()

lab.push ({"href" => qrole_href})

lab.push ({"href" => qapp_href})

lab.push ({"href" => qenv_href})

lab.push ({"href" => qloc_href})

As we said earlier, the Workload may or may not already exist. If it exists, it will be
returned as part of the list from find_ip_in_workloads(). Otherwise, that function
will return an empty array. So let’s see what we’ve got:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 68

if(infected == [])

 # We’ll need to create an Unmanaged Workload

else

 # Change the labels on the existing workload

end

Easy enough. Let’s take the first case, first. We’ll create an unmanaged

workload with the proper labels and network interface:

 wl = {"name" => "infected_host_" + infected_ip,

 "hostname" => "bad",

 "public_ip" => infected_ip,

 "interfaces" => [

 {"name" => "eth0",

 "address" => infected_ip,

 "cidr_block" => 32,

 "link_state" => "up"}],

 "online" => true,

 "labels" => lab }

 sync_api(creds,:post,"/workloads",true,wl.to_json)

On the other hand, if all we need to do is change the Labels, that’s even easier. Note
that in this example, we only change the Labels on the first Workload returned:

 wl = { "labels" => lab }

 sync_api(creds,:put,infected[0],nil,wl.to_json)

It’s really that simple on the code side. Note that there are a few things to think
about. First, as with the other examples in this book, there is no error handling here.
More importantly, there is no logging. It would be wise to write details about each
run of this script to a log, and note a time/date, as well as the Workload that was
changed, along with the specific Labels prior to the change to “quarantine”. Because
eventually, you’re going to want to put those Labels back the way they were, and
having a record of the original Labels makes that easier.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 69

A more advanced script might even store the “before” Labels along with a Workload
HREF, and provide a command line interface where the script could also be used to
“un-quarantine” a Workload, given the IP and/or HREF. It would probably also be
wise to iterate through all of the Workloads returned by find_ip_in_workloads(), as
it’s possible there’s more than one. This code only modifies the first returned result
in order to keep the code simple and readable. Also note that in PCE versions prior
to 16.09, when changes are made only to Unmanaged Workloads that do not change
any normal VENs, changes are not pushed until the next event that changes VEN
policy. Meaning that if you’re running one of the affected versions of the PCE, your
network is not actually protected immediately. The solution is to make a gratuitous
change to something, then committing that change (you’ll see how to commit
changes in Chapter 11).

But there’s something more important here than the code. As the American Lt. Col.
Carlos A. Keasler once famously noted, “Just because you can, doesn’t mean you
should.” A great deal of thought needs to be put into this problem before you simply
plug this code into some sort of malware-detection API. Very simple errors, in any
one of a dozen places, can take down your entire data center. Every malware
detection engine has, at least once in it’s history, had a set of signatures pushed out
that identified something benign as a threat. Imagine if your malware detection
engine identified a new update of the NGINX binary as malware. Without
safeguards, this script would happily iterate through every NGINX box in your
network and completely disable it’s network connectivity, likely completely
crippling your ability to provide services to your customers. It’s easy to imagine
scenarios where this process could run amuck and cause massive outages. Think
before you implement a script of this power. It might be wise to create a list of
machines that can’t be automatically quarantined. Or pass all detection along for
human intervention before automatically doing a quarantine. In a 1962 Spider-Man
comic book, Uncle Ben wisely observed that, “With great power comes great
responsibility.”

The source code for this chapter can be found in Chapter 9 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 70

Chapter 10: Building Pairing Profiles

This chapter is about creating Pairing Profiles, and creating Pairing

Keys from those profiles. A Pairing Profile is a way to define the

default options that are selected (such as Labels) when installing the

VEN on a Workload. Installing a VEN with the Labels already set

allows that machine (provided Rules have already been established

in the Policy Compute Engine for the appropriate Labels) to boot up

for the first time and immediately become part of your security

ecosystem with no further actions required.

You’ll definitely want to read through the Illumio documentation on

Pairing Profiles before tackling this chapter to understand what

we’re doing. Trust me on this. The various parameters will be

meaningless without understanding the background material in the

documentation.

There are a fair number of options for creating a Pairing Profile; more than anything
we’ve looked at in the past. To begin, pull in the code we’ve used in the past (all of
the “require” statements, the credentials, and the functions we’ve written). Up at the
top, let’s add the variables we’re going to use to create the Pairing Profile:

pprofile_name = "Pair Me"

pprofile_app = "Boondoggle"

pprofile_env = "Production"

pprofile_loc = "Addis Ababa"

Our goal is to create a Pairing Profile called “Pair Me” for Workloads in my
Boondoggle application in my production environment in my Addis Ababa data
center. Other options we’ll want to set (we’ll talk about these below) is that we want
to lock (or prevent the end user from changing) the Labels for Application,
Environment, and Location, but allow the user to change the Role as he wishes. We
want to allow unlimited uses of the key we build from this profile, but only for 24
hours. We also want to lock the profile to force logging and to provide full flow data
(so nobody can do anything sneaky without us seeing the data) . We’re going to make
the assumption that you have fewer than 500 Labels in your PCE. If that’s not the
case, change the sync_api() call that fetches Labels into an async_api() call.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 71

The Pairing Profile JSON is complex enough that we’re going to build it piecemeal,
rather than trying to generate a full blob of JSON in one shot. We’ll start with a hash,
add the various elements, then convert the hash to JSON and submit it. We’ll then
use the Pairing Profile to generate a Pairing Key. First, let’s set some of the options
and required fields:

pprofile = Hash.new()

pprofile["name"] = pprofile_name

pprofile["enabled"] = true

pprofile["mode"] = "illuminated"

pprofile["key_lifespan"] = 86400

pprofile["allowed_uses_per_key"] = "unlimited"

pprofile["role_label_lock"] = false

pprofile["app_label_lock"] = true

pprofile["env_label_lock"] = true

pprofile["loc_label_lock"] = true

pprofile["mode_lock"] = false

pprofile["log_traffic"] = true

pprofile["log_traffic_lock"] = true

pprofile["visibility_level"] = "flow_summary"

pprofile["visibility_level_lock"] = true

Most of these are pretty self-explanatory, though it may not be immediately
apparent what all of the options are. The JSON schema files will be very valuable
here, in addition to the Illumio REST API Guide. We’ll skip some of the obvious
fields, but a few are worth talking about. The first of these is “key_lifespan”. A key
can be generated that is good forever, or it’s lifespan can be limited to a specific
number of seconds. If you want it to be unlimited, use a value of “unlimited”. Note
the quotation marks; they’re mandatory. If you want to limit key use to a specific
amount of time, you specify the number of seconds. For example, a day has 86400
seconds. Note that you must not use quotation marks around the number of
seconds. Only use the quotation marks if you’re specifying “unlimited”, or you’ll get
a 406 error. “allowed_uses_per_key” is similar. It’s either “unlimited”, or an integer
value with no quotation marks.

“mode” can be “idle”, “illuminated”, “test”, or “enforced”, depending on what
enforcement state you want the Workload to begin in. So long as you don’t set
“mode_lock” to true (no quotation marks!), you can always change it later. Finally,

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 72

“visibility level” can be “flow_summary”, “flow_drops”, or “flow_off”, for full flow
data, data only on dropped flows, or no flow data at all. This can also be changed
later, unless “visibility_level_lock” is set to true.

The Pairing Profile may have anywhere from zero to four Labels pre-set, and these
can be left as changeable by the user or locked in place for a given Profile/Key.
We’re going to add three Labels, lock them (see above), and leave the Role Label to
be changed by the user, either at installation time, or later. We add the four Labels to
an array, then add the array to the Pairing Profile hash:

lab = Array.new()

lab.push({"href"=>labels["app"][pprofile_app]})

lab.push({"href"=>labels["loc"][pprofile_loc]})

lab.push({"href"=>labels["env"][pprofile_env]})

pprofile["labels"] = lab

Let’s have a look at the hash we’ve build before we convert it to JSON and push it to
the API:

{"name"=>"Pair Me",

 "enabled"=>true,

 "mode"=>"illuminated",

 "key_lifespan"=>86400,

 "allowed_uses_per_key"=>"unlimited",

 "role_label_lock"=>false,

 "app_label_lock"=>true,

 "env_label_lock"=>true,

 "loc_label_lock"=>true,

 "mode_lock"=>false,

 "log_traffic"=>true,

 "log_traffic_lock"=>true,

 "visibility_level"=>"flow_summary",

 "visibility_level_lock"=>true,

 "labels"=>[{"href"=>"/orgs/9/labels/1152"},

{"href"=>"/orgs/9/labels/1154"}, {"href"=>"/orgs/9/labels/1153"}]}

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 73

Looks good! Let’s push it to the API, and save the HREF that’s returned (we’ll need
the HREF to generate the pairing key):

result = sync_api(creds, :post, "/pairing_profiles",

 true, pprofile.to_json)["href"]

href = result["href"]

Assuming this was successful (yes, you should always check if you’re writing real
production code and not just learning), the variable HREF should be set to the HREF
of the Pairing Profile you’ve just created. You can also see it in the PCE web console:

Now we can take the HREF and generate a Pairing Key with it. The key will be
returned as the value for “activation_code”:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 74

result = sync_api(creds, :post, href + "/pairing_key",

 false, {}.to_json)

activation_code = result["activation_code"]

It’ll look something like this:

{"activation_code"=>"1bd76f13377c8c25c56ddcf96ba026a9aee011a25a38d1f4cf355

5b1a42047901b61cdd5f0dea2481"}

So now what do we do with the Pairing Key? Among other things, it can be plugged
into the script that fetches and installs the VEN on the machines in your data center.
You can get a template for this by clicking “Generate Key” in the Pairing Profile
screen in the PCE web console. You’ll get a sample script for both Windows and
Linux that you can paste into the command line. Here’s an example of a Linux
installation script (the Pairing Key (or “Activation Code”) is the last line in the
script):

Obviously, generate your own script in the PCE web console, as this script won’t
work on your system. And remember to paste in your Pairing Key in place of the
long key on the last line of the script. That’s it. You can adapt this script into Chef,
Ansible, Puppet, or Salt scripts, or just run it by hand on each machine you want to
install the VEN on with this particular Pairing Profile.

The source code for this chapter can be found in Chapter 10 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 75

Chapter 11: Building Rulesets and Rules

This is the final chapter in the tutorial, and in it we will tackle the

most difficult task that is commonly done via the API: automated

policy creation. There are no new concepts here, and each of the

individual tasks are all relatively straightforward, the resulting JSON

is quite complex and every detail must be precisely perfect, or else the

API will spit back a “406 Not Acceptable (RestClient::NotAcceptable)”

error. Accuracy is key.

Like Chapter 10: Building Pairing Profiles, it’s worth refreshing your

memory of Rulesets and Rules using the Illumio documentation, lest

this chapter sound like gibberish.

Let’s dive in. There’s going to be a lot of code compared to most previous chapters.
This will be the longest chapter in the book by far, but the result will be code that
can automatically generate policy for new applications as they’re brought on line or
migrated to Illumio. The specific task we’re going to tackle is what we call HVA (or
“High-Value Application”) Ringfencing. It’s the logical equivalent of sticking a group
of machines on their own VLAN, then firewalling that VLAN from the rest of your
network. We’re going to build a policy to protect the refrigeration system at
McMurdo Station in their Production environment. The only traffic we’ll allow in is
UDP port 42, which is the port our mythical refrigeration manufacturer uses for
their remote-control application called “Fridgeomatic”. We’ll also turn on
SecureConnect (IPsec encryption) for the traffic between the protected systems.
Traffic will only be allowed from Fridge Command Central, a specific machine at
address 10.246.0.1/32.

As always, let’s start with the code we’ve developed to date (yes, you’re correct, it
would be great to package this up in a library or gem – consider that your
homework assignment). Below the usual code at the top where we specify the
required gems and the credentials to the PCE, there are some new variables defined
for the Ruleset and Rules we’re going to build:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 76

ring_app = "Refrigeration"

ring_env = "Production"

ring_loc = "McMurdo"

ring_role = "thing"

ring_ruleset = "fridge"

ring_port = "42"

ring_proto = "17"

ring_service = "fridgeomatic"

ring_allowed_net = "10.246.0.1"

ring_allowed_netmask = "32"

ring_allowed_name = "fridge_command_central"

These are all of the things we’re going to build in the PCE to build our new Ruleset.
Most of these should be self-explanatory, but we’ll talk about each variable as we
use it in the code.

The first task we’ll do in code is write a wrapper around our sync_api() and
async_api() calls. Normally, you specifically call one or the other, depending on
whether or not you expect <= 500 results back. We’re going to define a simple call
that tries sync_api(), and if 500 results are returned, automatically retries with
async_api(). It’s bad practice to use this as-is in production, but it makes our code
cleaner and easier to read, so let’s just go with it for now:

def call_api(creds, type, resource, org, payload = nil)

 response = sync_api(creds, type, resource, org, payload)

 if (response.length >= 500 and type == :get)

 response = async_api(creds, type, resource, org, payload)

 end

 return(response)

end

We do allow for the possibility of more than 500 items returned in a sync_api() get,
as it’s always possible the Illumio API may change in the future, and we don’t want
our code to break in strange ways.

We’ll have lists of all IP Lists, Services, and Labels (see below), but we’ll need a way
to search these lists for specific entries. For Labels, that’s simple. We created a hash
structure in a previous lesson that organizes Labels so that they can be retrieved by

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 77

something like Label[‘role’][‘foo’]. For the IP Lists and Services, we’ll need a search
function. The function below requires the name of the JSON variable you want to
search for, the value of that variable to match, the array itself, and whether you want
the whole match, or just the HREF(s). Note that the returned value is an array, not a
single value. Why? Because it’s possible to have IP Lists, Services, and Labels with
duplicate names. So make sure you’ve got the one you really want, or really odd
things can happen:

def find_var(var, value, stuff, href = false)

 if href

 return((stuff.select {|thing| thing[var] == value}).map {|thing|

thing["href"]})

else

 return(stuff.select {|thing| thing[var] == value})

 end

end

Here are two new functions. They work in the same way as functions we’ve created
in the past, so should look familiar. The first creates a Service, and the second
creates an IP List. Note that neither of these functions exploit the full capability of
their respective API calls. Services can have many ports and IP Lists can have many
hosts and/or subnets. Both functions, for simplicity, create one single entry each.
Production code should almost certainly allow for multiple Services/addresses for
efficiency. Note that the Illumio API wants IP protocols specified as an integer, not a
name. These can be found on the Internet in RFC 1700, among other sources (do a
quick Google search on “RFC1700”). The short version is that TCP is 6 and UDP is 17.

def create_simple_service(name, port, proto, creds)

 return(call_api(creds, :post, "/sec_policy/draft/services", true,

 {"name" => name,

 "service_ports" =>

 [{"port" => port.to_i,

 "protocol" => proto.to_i}]}.to_json))

end

def create_simple_iplist(name, address, subnet, creds)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 78

 addr = address + "/" + subnet

 return(call_api(creds, :post, "/sec_policy/draft/ip_lists", true,

 {"name" => name,

 "ip_ranges" =>

 [{"from_ip" => addr,

 "exclusion" => false}]}.to_json))

end

As in previous chapters, let’s create a creds object to pass around for API calls. Then
let’s read in the Labels, IP Lists, and Services from the PCE:

creds = Creds.new(login, passwd, pce, org_href,port)

labels = get_all_labels(creds)

services = call_api(creds, :get, "/sec_policy/draft/services", true)

iplists = call_api(creds, :get, "/sec_policy/draft/ip_lists", true)

Ok, we’re done with all of the setup. Time to get some real work done. First thing,
let’s create any of the Labels we’ll need that don’t already exist. Note that our
function we created to make Labels doesn’t check to see if a Label already exists, so
we do it here ourselves before calling the function to create a new Label. Notice that
we’re also adding each Label as it’s created to our global “labels” hash so we don’t
have to re-query the PCE for new Label data later:

unless labels["app"][ring_app]

 labels["app"][ring_app]=create_label("app", ring_app, creds)["href"]

end

unless labels["env"][ring_env]

 labels["env"][ring_env]=create_label("env", ring_env, creds)["href"]

end

unless labels["loc"][ring_loc]

 labels["loc"][ring_loc]=create_label("loc", ring_loc, creds)["href"]

end

Once the Labels have been added, they’ll show up in the PCE web console as
something like this:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 79

Now it’s time to create our “Fridgeomatic” Service. Like our simple Label creation
function, we need to check for pre-existing Services before we try to create one. Also
note that, just like Labels, we save the returned data for efficiency:

if (find_var("name", ring_allowed_name, iplists, true).length == 0)

 iplists.push(create_simple_iplist(ring_allowed_name,

 ring_allowed_net,

 ring_allowed_netmask,

 creds))

end

The Service will show up in the PCE web console like this:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 80

We’ll need to define the special subnet that’s allowed to talk to the refrigeration
system. As above, we first check, then save the returned data once it’s built:

if (find_var("name", ring_allowed_name, iplists, true).length == 0)

 iplists.push(create_simple_iplist(ring_allowed_name,

 ring_allowed_net,

 ring_allowed_netmask,

 creds))

end

The IP List will look something like this in the PCE web console:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 81

All of the required pieces are now built. It’s time to build the actual Ruleset. The
Ruleset has three basic pieces:

1. Some basic bits, like the name, and whether the Ruleset is enabled.
2. The Scope (or Scopes).
3. The actual Rules.

We’ll build the Ruleset by stuffing everything into a hash named “ruleset”. Once all
the proper ingredients are added, we’ll convert the hash to JSON and submit it to the
API. First, let’s create the hash, and put the first two small items into it:

ruleset = Hash.new()

ruleset["name"] = ring_ruleset

ruleset["enabled"] = true

In order to add the Scope, we’ll create a “scope” array, add the various Scope pieces
to it, then add the Scope to the Ruleset:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 82

scope = Array.new()

scope.push({"label"=>{"href"=>labels["app"][ring_app]}})

scope.push({"label"=>{"href"=>labels["loc"][ring_loc]}})

scope.push({"label"=>{"href"=>labels["env"][ring_env]}})

ruleset["scopes"] = [scope]

We’ll add Rules the same way. We’ll create a Rules array to contain the individual
Rules, then create a hash for each individual rule. After creating each rule, we’ll copy
the rule hash contents to the Rules array, and repeat for each rule. Once all
individual Rules have been added to the Rules array, we’ll add that array to the
Ruleset hash. Here’s the Rules array:

rules = Array.new()

Now let’s build up the first rule and add it to the Rules. The first rule we’ll create is
the “All Workloads” can talk to “All Workloads” on “All Services”. We’ll also turn on
SecureConnect for encryption. There are lots of fun things to take note of below.
When you add a new rule, make sure it’s enabled (unless you have reason not to). In
this case, make sure sec_connect is true (false is off, or normal unencrypted traffic).
The values for true and false must not be in quotation marks, or you’ll get a 406
error (told you this was tricky). We also need to specify “unscoped_consumers”. If
set to true, this rule will be an Extra Scope rule, and if false, an Intra-Scope rule.

For providers and consumers, there are a wide array of things they can be set to in
Rules, including Labels and IP Lists to name a few (the REST API Guide has complete
guidance on this). For our purposes, we want to include “All Workloads” for both. In
Illumio API parlance, “All Workloads” is represented as an array containing the hash
{“actors” => “ams”} (“ams” is legacy parlance for “All Managed Servers”). Next, we
want to specify that “All Services” are allowed. “All Services” is pre-populated in the
PCE, so we search for it with our find_var() function, and blindly accept the first
match returned (remember that you can have duplicate names, so enhancing this
functionality is a good project for production versions of this code). Finally, we need
to set “ub_service”. “ub_service” is a bit of an oddball, and is likely to go away in
future versions of the Illumio API. In the meantime, unless you’re working with
Bound Services, always set ub_service to the HREF for “All Workloads” (see the
REST API Guide for more information).

We end creation of this rule by pushing it into the Rules array.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 83

rule = Hash.new()

rule["enabled"] = true

rule["sec_connect"] = true

rule["unscoped_consumers"] = false

rule["providers"] = [{"actors" => "ams"}]

rule["consumers"] = [{"actors" => "ams"}]

rule["service"] = {"href" => find_var("name", "All Services", services,

true)[0]}

rule["ub_service"] = {"href" => find_var("name", "All Services", services,

true)[0]}

rules.push(rule)

Next, we’ll build the second rule. This rule allows traffic from the outside to come in,
but only on UDP port 42 (the “fridgeomatic” Service we created earlier). This rule is
similar, but not the same as that above. First, we don’t want SecureConnect for this
rule, so sec_connect is set to false. Also, the provider is a Label (a role Label
specifically, named in the variable ring_role). We pull the HREF for that out of the
Label hash. The consumer is an IP List. Like the provider Label, it’s the IP List we
created above, which we pull out by name (named by the variable
ring_allowed_name). Note that it’s not uncommon in a ringfencing rule to want “All
IPv4 and IPv6 Addresses” as a consumer. If you wanted that, the consumer line
would be the same, but instead of searching the ring_allowed_name variable (which
is “fridge_command_central”), you’d search for the magic pre-built IP List called
“Any (0.0.0.0/0 and ::/0)”.

As above, we push this rule into the Rules array for later inclusion in the Ruleset.

rule = Hash.new()

rule["enabled"] = true

rule["sec_connect"] = false

rule["unscoped_consumers"] = false

rule["providers"] = [{"label" => {"href" => labels['role'][ring_role]}}]

rule["consumers"] = [{"ip_list" => {"href" => find_var("name",

ring_allowed_name, iplists, true)[0]}}]

rule["service"] = {"href" => find_var("name", ring_service, services,

true)[0]}

rule["ub_service"] = {"href" => find_var("name", "All Services", services,

true)[0]}

rules.push(rule)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 84

With both Rules done, let’s add the Rules to the Ruleset:

ruleset["rules"] = rules

The Ruleset has quite a few things in it now. Before we add the Ruleset via the API,
let’s have a look at the contents:

[1] pry(main)> ruleset

=> {"name"=>"fridge",

 "enabled"=>true,

 "scopes"=>

 [[{"label"=>{"href"=>"/orgs/9/labels/1146"}},

 {"label"=>{"href"=>"/orgs/9/labels/1148"}},

 {"label"=>{"href"=>"/orgs/9/labels/1147"}}]],

 "rules"=>

 [{"enabled"=>true,

 "sec_connect"=>true,

 "unscoped_consumers"=>false,

 "providers"=>[{"actors"=>"ams"}],

 "consumers"=>[{"actors"=>"ams"}],

 "service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"},

 "ub_service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"}},

 {"enabled"=>true,

 "sec_connect"=>false,

 "unscoped_consumers"=>false,

 "providers"=>[{"label"=>{"href"=>"/orgs/9/labels/1084"}}],

"consumers"=>[{"ip_list"=>{"href"=>"/orgs/9/sec_policy/draft/ip_lists/130"

}}],

 "service"=>{"href"=>"/orgs/9/sec_policy/draft/services/273"},

 "ub_service"=>{"href"=>"/orgs/9/sec_policy/draft/services/194"}}]}

[2] pry(main)>

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 85

So we’ve got a complete Ruleset now. Let’s submit it:

response = call_api(creds, :post, "/sec_policy/draft/rule_sets", true,

ruleset.to_json)

If you’ve got no errors (and it’s not a duplicate), you should get back a blob of JSON
indicating (among other things) the HREF of the new Ruleset. As always, real
production code should check for success, and either fix, or at least signal to the
user, any errors.

We’re actually not done. The Ruleset we just created is actually not yet pushed to
the Workloads. We need to commit (or Provision in Illumio-speak) the changes
before they take effect. There’s a whole section in the REST API Guide regarding
Provisioning, but we’re going to take the easy route and simply provision all
outstanding changes in one go. Keep in mind that this could get a bit exciting (and
not necessarily in a good way) if there are other unprovisioned changes that were
made by other users of the system pending. Possibly even including other users only
partially through their configuration steps. So use this with caution, unless your
script is certain to be making the only changes to the system at the time it is run:

response = call_api(creds, :post, "/sec_policy", true, {"commit_message"

=> "penguins rule"}.to_json)

Assuming “response” indicates success, your new policy should be enforced in your
network some time in the next minute or so. If you log into the PCE web console and
view your new Ruleset, it should look similar to this:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 86

The source code for this chapter can be found in Chapter 11 Source Code.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 87

Chapter 12: The API Rosetta Stone

An example can make all of the difference in the world when learning. While the
vast majority of DevOps/Sysops/SRE work we see at our customers is done in Ruby
or Python, there are certainly exceptions to the rule. The tutorial in this book was
written in Ruby, as that seems to satisfy Pareto’s Law (more commonly known as
“the 80/20 Rule”). That being said, Go and Bash are also commonly found in this
space, and even Perl, C, and C++ pop up from time to time.

Not everybody will know (or want to learn) Ruby, and your organization may do
DevOps/Sysops/SRE in another language. The following pages have one example
per page of making an API call and returning a list of all Labels in various languages.
This should be enough to get you “over the hump” to applying the lessons in the
previous tutorial to your own environment.

The beauty of an open API is that it uses open standards for access, meaning that
nearly any programming language can be used, provided you either have, or are
willing to write, the proper libraries. If your preferred language is not listed in the
following pages, feel free to construct a similar very small example of calling the
Illumio API in your language and send it to us (file a ticket n the Illumio Support
PagePortal), and we’ll include it in future editions of this book (with an attribution
to you as the submitter, if you give us permission).

http://www.illumio.com/
https://support.illumio.com/index.html
https://support.illumio.com/index.html

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 88

Ruby

#!/usr/bin/env ruby

Returns all known labels as a parsed Ruby data structure.

require 'json’

require 'rest-client’

login = "api_1ea0799f8bd486c8e”

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d”

pce =

"https://"+login+":"+passwd+"@illumio.mycompany.com:443/api/v1/orgs/9/”

p JSON.parse(RestClient.get(pce+"labels",

 {:accept => :json,

 :content_type => :json}))

This example requires the open source “rest-client” gem. On Linux/macOS systems,
this can be installed with “sudo gem install rest-client”. On Windows systems, it can
be installed using rubyinstaller (or the gem manager of your choice).

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 89

Python

#!/usr/bin/python

Returns all known labels as a parsed Python data structure.

import requests

login = "api_1ea0799f8bd486c8e”

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d”

pce =

"https://"+login+":"+passwd+"@illumio.mycompany.com:443/api/v1/orgs/9/”

response = requests.get(pce+"labels",auth=(login,passwd))

print response.json()

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 90

Perl

#!/usr/bin/perl

Returns all known labels as a JSON string.

use LWP::UserAgent;

use HTTP::Request;

my $login="api_1ea0799f8bd486c8e";

my

$passwd="6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a97725bdf02d400d";

my $pce="https://illumio.mycompany.com:443/api/v1/orgs/9/";

my $browser=LWP::UserAgent->new();my $req=HTTP::Request->new();

$req->method('GET');$req->uri($pce . "labels");

$req->header("Content_Type"=>"application/json");

$req->header("Accept"=>"application/json");

$req->authorization_basic($login,$passwd);

print($browser->request($req)->content);

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 91

C

#include <stdio.h>

#include <curl/curl.h>

// Returns all known labels as a JSON string.

int main(void){

 CURL *curl;

 char *url="https://illumio.mycompany.com:443/api/v1/orgs/9/labels";

 CURLcode res;

 curl = curl_easy_init();

 curl_easy_setopt(curl, CURLOPT_URL, url);

 curl_easy_setopt(curl,CURLOPT_USERPWD,

 "api_1ea0799f8bd486c8e:6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977

225bdf02d400d");

 curl_easy_setopt(curl, CURLOPT_SSL_VERIFYPEER, 0L);

 // The following function prints to STDOUT by default.

 curl_easy_perform(curl);

 curl_easy_cleanup(curl);

 return(0);

}

This example requires the open source libcurl library
(https://curl.haxx.se/libcurl/). libcurl is also available as part of most Linux distros
via the package manager, as well as the MacPorts and HomeBrew systems for
macOS. For Windows, it can be downloaded and installed from the libcurl home
page.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 92

Go

package main

// Returns all known labels as a JSON string.

import (

 _ "crypto/sha512”

 "fmt”

 "io/ioutil”

 "net/http”

)

func getLabels(api_user string, api_key string, pce string) string {

 client := &http.Client{}

 req, err := http.NewRequest("GET", pce+"/labels", nil)

 req.Header.Set("accept", "application/json")

 req.Header.Set("content-type", "application/json")

 req.SetBasicAuth(api_user, api_key)

 resp, err := client.Do(req)

 bodyText, err := ioutil.ReadAll(resp.Body)

 return (string(bodyText))

}

func main() {

 fmt.Printf("%+v\n", getLabels("api_1ea0799f8bd486c8e",

 "6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225b

df02d400d",

 "https://illumio.mycompany.com:443/api/v1/orgs/9/"))

}

Go includes everything you need to talk to the Illumio API out of the box, but note
the very unusual “_” on the “crypto/sha512” line in the source. Miss that, and your
code will fail.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 93

Common Lisp

(ql:quickload :drakma)

(ql:quickload :cl-json)

; Returns all known labels as an A-List.

(defparameter *login* "api_1ea0799f8bd486c8e")

(defparameter *passwd*

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d")

(defparameter *pce* "https://illumio.mycompany.com:443/api/v1/orgs/9/")

(defun get-labels (login passwd pce)

 (let ((result (drakma:http-request (concatenate 'string pce "labels")

 :method :get

:accept "application/json"

:content-type "application/json"

:basic-authorization (list login passwd))))

 (json:decode-json-from-string (map 'string #'code-char (nth-value 0

result)))))

(princ (get-labels *login* *passwd* *pce*))

This example requires the Quicklisp package manager
(https://www.quicklisp.org/beta/), which in turn requires the Drakma library (for
HTTP/HTTPS/REST) support as well as cl-json for JSON parsing.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 94

Bash/Curl

#!/bin/bash

Returns all known labels as a parsed JSON string.

LOGIN="api_1ea0799f8bd486c8e”

PASSWD="6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d”

PCE=https://illumio.mycompany.com:443/api/v1/orgs/9/

FLAG=””

curl -s -k -u ${LOGIN}:${PASSWD} \

 -H "Accept: application/json" \

 -X GET ${PCE}"labels" | ./JSON.sh | while read -r LINE; do

 TMP=`echo ${LINE} | awk '{ print $1 }' | tr -d '[]'`

 ID=`echo ${TMP} | awk -F, '{ print $1 }'`

 TYPE=`echo ${TMP} | awk -F, '{ print $2 }' | tr -d '\"'`

 if [[${ID} != ${FLAG}]]; then

 HREF=""

 KEY=""

 VALUE=""

 FLAG=${ID}

 fi

 case "$TYPE" in

 href)

 HREF=`echo ${LINE} | awk '{ print $2 }' | tr -d '\"'`

 ;;

 key)

 KEY=`echo ${LINE} | awk '{ print $2 }' | tr -d '\"'`

 ;;

 value)

 VALUE=`echo ${LINE} | awk '{ print $2 }' | tr -d '\"'`

 ;;

 esac

http://www.illumio.com/
https://illumio.mycompany.com/api/v1/orgs/9/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 95

 if [[${KEY} != "" && ${VALUE} != "" && ${HREF} != ""]]; then

 echo "KEY = ${KEY}"

 echo "VALUE = ${VALUE}"

 echo "HREF = ${HREF}"

 echo ""

 FLAG=""

 fi

done

Note that while a simple Bash example is provided, Bash is not a recommended way
to use the Illumio API for any but the most trivial tasks. This example makes use of
the Bourne Shell JSON parser (linked below). Use of shell with the Illumio REST API
is not recommended for any but the most visionary (or desperate) customers.

https://github.com/dominictarr/JSON.sh

http://www.illumio.com/
https://github.com/dominictarr/JSON.sh

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 96

Chapter 13: Conclusion

If you’ve made it this far in the book, you should now be at least somewhat
comfortable tackling the Illumio API for automating security in your environment.
While the requirements of using the API are exacting, they’re certainly within the
reach of anyone willing to take the time to learn. With a moderate amount of effort,
it’s possible to integrate Illumio into your automated flow-through provisioning
system, and create security for new systems in real time as the systems themselves
are built and deployed.

While every effort has been made to validate the examples used in this book, it’s
likely that there are mistakes. They may be mistakes that slipped past the
proofreading of the book, or they may be changes required by changes to the API
itself. This book was completed using version 17.1 of the PCE, just prior to the
publication of 17.2. It’s expected that this book will be updated regularly, but keep
in mind that there are minor differences between revisions of the PCE. Fortunately,
the vast majority of those revisions involve additional API calls and additional
options to existing calls, not major changes to the pre-existing API.

While the code in this book is written in Ruby, the principles involved in using the
API apply equally to a wide variety of languages. Illumio has customers who have
deployed automated systems involving many tens of thousands of VENs in Ruby,
Python, and Go. Your author typically writes API code in Common Lisp as a first
choice, demonstrating that the techniques in this book can even apply to
programming languages more than 60 years old (that being said, I wouldn’t want to
try the same thing in Fortran or COBOL).

As you write more and more API code, you’ll start building your own library of
commonly used functions. Save these, and refine them. Add error-checking and
bounds-checking. Polish them, and build your own library. It’s a common thing in
the programming world to build an entire library around an API, reducing API
programming to a series of function calls, allowing you to build code that completely
hides the various tasks of interfacing with the API. As you write more and more API
code, you’ll soon find that you can leverage your old code and solve problems more
and more quickly. Once you’ve built a library to abstract the API, you might find that
a simple application might only take a few dozen lines of new code, making it very
quick and easy to automate security tasks.

Don’t miss out on the non-security aspects of the product. Various pieces of very
valuable business information are available via the Illumio API. You can extract an
inventory of operating systems and their specific versions, IP addresses, system
names, ports in use, software packages installed, physical locations, and user
information all from the API. Once labelled, the Labels themselves are useful for
calculating counts, locations, and uses of various computing resources within an

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 97

organization. This data can be used for a huge number of business purposes, and
most of our customers soon find the Illumio infrastructure to be the source of record
for accurate system data.

If you find a mistake, whether in the text or in the code, please feel free to file a bug
with Illumio, and it will be corrected. A current copy of all code contained in this
book will be maintained on the Illumio Support Portal for download.

http://www.illumio.com/
https://support.illumio.com/index.html

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 98

Appendix: Source Code Samples

Chapter 2 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "jeff.francis@illumio.com"

passwd = "SecretPassword"

pce = "illumio.mycompany.com"

port = "443"

response = RestClient::Request.new(

 :url =>

"https://"+pce+":"+port+"/api/v1/login_users/authenticate?pce_fqdn="+pce,

 :method => :post,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

json = JSON.parse(response)

auth_token = json['auth_token']

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1/users/login",

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json,

 "Authorization" => "Token token="+auth_token+""}).execute()

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 99

json = JSON.parse(response)

org_id = json['orgs'][0]['org_href']

puts("Your org HREF is: #{org_id}")

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 100

Chapter 3 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

json = JSON.parse(response)

json.each do |j|

 puts "href: #{j['href']}"

 puts "type: #{j['key']}"

 puts "name: #{j['value']}"

 puts ""

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 101

Chapter 4 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

#RestClient.log = 'stderr'

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :payload => {"key" => "app", "value" => "web"}.to_json.to_str,

 :method => :post,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

puts response

json = JSON.parse(response)

puts json

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 102

Chapter 5 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

require 'csv'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

File.open("labels.csv").each do |line|

 CSV.parse(line) do |stuff|

 json = JSON.parse(

 RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :payload => {"key" => stuff[0], "value" =>

stuff[1]}.to_json.to_str,

 :method => :post,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute())

 puts json

 end

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 103

Chapter 6 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

response = RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+org_href+"/labels",

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

sleep(response.headers[:retry_after].to_i)

status=""

location=response.headers[:location]

while (status!="done" and status!="failed")

 response = JSON.parse(RestClient::Request.new(

 :url =>

"https://"+pce+":"+port+"/api/v1/"+location,

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute())

 status=response['status']

 puts status

 sleep 1 unless (status=="done" or status=="failed")

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 104

end

url=response["result"]["href"]

response = JSON.parse(RestClient::Request.new(

 :url => "https://"+pce+":"+port+"/api/v1"+url,

 :method => :get,

 :user => login,

 :password => passwd,

 :headers => {:accept => :json,

 :content_type => :json}).execute())

response.each do |resp|

 puts "HREF: #{resp['href']}"

 puts "type: #{resp['key']}"

 puts "name: #{resp['value']}"

 puts ""

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 105

Chapter 7 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

This object holds credentials for a PCE.

class Creds

 attr_accessor :login, :passwd, :pce, :port, :org

 def initialize(login, passwd, pce, org, port=443)

 @login = login

 @passwd = passwd

 @pce = pce

 @port = port.to_s

 @org = org

 end

 def url_with_api(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1/#{rest}")

 end

 def url_with_org(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1#{@org}/#{rest}")

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 106

end

Makes a synchronous API call using a pre-populated Creds object, a

type (:get, :post, :put, :delete), the specific call you're making

to the API (such as "/labels"), whether you want the org specified

as part of the full URL or not (this will be nil when supplying a

full HREF for "resource"), and an optional payload (this will be

ignored in cases it makes no sense).

def sync_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => type,

 :payload => payload,

 :user => creds.login,

 :password => creds.passwd,

 :verify_ssl => false,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

 if (response.to_s() != "")

 return(JSON.parse(response))

 else

 return "ok"

 end

end

Makes an asynchronous API call using a pre-populated Creds object, a

type (async calls can only be of type :get, but the field is still

here for consistency with the sync api call, however this value will

be ignored), the specific call you're making to the API (such as

"/labels"), whether you want the org specified as part of the full

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 107

URL or not (this will be nil when supplying a full HREF for

"resource"), and an optional payload (payloads make no sense for async

GET calls, so this field will be ignored).

def async_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => :get,

 :user => creds.login,

 :password => creds.passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

 sleep(response.headers[:retry_after].to_i)

 monitor_url = response.headers[:location]

 status = ""

 while (status != "done" and status != "failed")

 response = sync_api(creds,:get,monitor_url,nil)

 status = response['status']

 sleep 1 unless (status == "done" or status == "failed")

 end

 return (sync_api(creds,:get,response["result"]["href"],nil))

end

Create a Creds object holding everything we need to know about a PCE.

creds = Creds.new(login,passwd,pce,org_href,port)

puts "Getting labels via a sync API call:\n\n"

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 108

Get the labels with a sync call...

response = sync_api(creds,:get,"labels",true)

Show me the result of my call.

response.each do |resp|

 puts "HREF: #{resp['href']}"

 puts "type: #{resp['key']}"

 puts "name: #{resp['value']}"

 puts ""

end

puts "\n\nGetting labels via an async API call:\n\n"

Now get the labels with an async call...

response = async_api(creds,:get,"labels",true)

Show me the result of my call.

response.each do |resp|

 puts "HREF: #{resp['href']}"

 puts "type: #{resp['key']}"

 puts "name: #{resp['value']}"

 puts ""

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 109

Chapter 8 Source Code

#!/usr/bin/env ruby

require 'json'

require 'rest-client'

require 'csv'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

This object holds credentials for a PCE.

class Creds

 attr_accessor :login, :passwd, :pce, :port, :org

 def initialize(login, passwd, pce, org, port=443)

 @login = login

 @passwd = passwd

 @pce = pce

 @port = port.to_s

 @org = org

 end

 def url_with_api(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1/#{rest}")

 end

 def url_with_org(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1#{@org}/#{rest}")

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 110

 end

end

Makes a synchronous API call using a pre-populated Creds object, a

type (:get, :post, :put, :delete), the specific call you're making

to the API (such as "/labels"), whether you want the org specified

as part of the full URL or not (this will be nil when supplying a

full HREF for "resource"), and an optional payload (this will be

ignored in cases it makes no sense).

def sync_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => type,

 :payload => payload,

 :user => creds.login,

 :password => creds.passwd,

 :verify_ssl => false,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

 if (response.to_s() != "")

 return(JSON.parse(response))

 else

 return "ok"

 end

end

Makes an asynchronous API call using a pre-populated Creds object, a

type (async calls can only be of type :get, but the field is still

here for consistency with the sync api call, however this value will

be ignored), the specific call you're making to the API (such as

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 111

"/labels"), whether you want the org specified as part of the full

URL or not (this will be nil when supplying a full HREF for

"resource"), and an optional payload (payloads make no sense for async

GET calls, so this field will be ignored).

def async_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => :get,

 :user => creds.login,

 :password => creds.passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

 sleep(response.headers[:retry_after].to_i)

 monitor_url = response.headers[:location]

 status = ""

 while (status != "done" and status != "failed")

 response = sync_api(creds,:get,monitor_url,nil)

 status = response['status']

 sleep 1 unless (status == "done" or status == "failed")

 end

 return (sync_api(creds,:get,response["result"]["href"],nil))

end

Return a hash of hashes containing all labels and their HREFs.

def get_all_labels(creds)

 response = sync_api(creds,:get,"/labels",true)

 if (response.length == 500)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 112

 response = async_api(creds,:get,"/labels",true)

 end

 labels = Hash.new()

 labels['role'] = Hash.new()

 labels['app'] = Hash.new()

 labels['env'] = Hash.new()

 labels['loc'] = Hash.new()

 response.each do |resp|

 if (resp['key'] == "role")

 labels['role'][resp['value']] = resp['href']

 end

 if (resp['key'] == "app")

 labels['app'][resp['value']] = resp['href']

 end

 if (resp['key'] == "env")

 labels['env'][resp['value']] = resp['href']

 end

 if (resp['key'] == "loc")

 labels['loc'][resp['value']] = resp['href']

 end

 end

 return(labels)

end

Create an unmanaged workload. "creds" is the PCE Creds object,

"name" is the name of the workload to be displayed in the PCE,

"hostname" is the full hostname of the workload (can be a null

string - ""), "ip" is the ip address of the unmanaged workload as a

string, and lab1, lab2, lab3, and lab4 are HREFs for the labels to

be applied (all optional). Note that unlike labels, it's possible

(and very confusing) to create duplicate unmanaged workloads, so be

careful. Returns the JSON specifying the new unmanaged workload.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 113

def create_umw(creds,name,hostname,ip,lab1=nil,lab2=nil,lab3=nil,lab4=nil)

 lab = Array.new()

 lab.push ({"href" => lab1}) if (lab1)

 lab.push ({"href" => lab2}) if (lab2)

 lab.push ({"href" => lab3}) if (lab3)

 lab.push ({"href" => lab4}) if (lab4)

 wl = {"name" => name,

 "hostname" => hostname,

 "public_ip" => ip,

 "interfaces" =>

 [{"name" => "eth0",

 "address" => ip,

 "cidr_block" => 32,

 "link_state" => "up"}],

 "online" => true,

 "labels" => lab }

 return(

 JSON.parse(

 sync_api(creds,:post,"/workloads",true,wl.to_json)))

end

Create a label in the PCE. "type" must be one of "role", "app",

"env", "loc" (note that this is not checked). "value" is the name

given to the label. Does not check for duplicates before creating,

and fails if a label of this name and type already exist. Returns

the JSON specifying the new label.

def create_label(creds,type,name)

 return(

 JSON.parse(sync_api(creds,:post,"/labels",true,

 {"key" => type, "value" =>

name}.to_json).to_json))

end

Create a Creds object holding everything we need to know about a PCE.

creds = Creds.new(login,passwd,pce,org_href,port)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 114

Fetch all of the labels from the PCE.

labels = get_all_labels(creds)

File.open("workloads.csv").each do |line|

 CSV.parse(line) do |stuff|

 name = stuff[0]

 hostname = stuff[1]

 ip = stuff[2]

 role = stuff[3]

 app = stuff[4]

 env = stuff[5]

 loc = stuff[6]

 # Get the role HREF, or create it if it doesn't already exist.

 if (role != nil)

 if (labels['role'][role])

 puts "Role #{role} already exists."

 role = labels['role'][role]

 else

 puts "Creating role #{role}..."

 href = create_label(creds,"role",role)['href']

 labels['role'][role] = href

 role = href

 end

 else

 puts "Role not specified."

 role = nil

 end

 # Get the app HREF, or create it if it doesn't already exist.

 if (app != nil)

 if (labels['app'][app])

 puts "App #{app} already exists."

 app = labels['app'][app]

 else

 puts "Creating app #{app}..."

 href = create_label(creds,"app",app)['href']

 labels['app'][app] = href

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 115

 app = href

 end

 else

 puts "App not specified."

 app = nil

 end

 # Get the env HREF, or create it if it doesn't already exist.

 if (env != nil)

 if (labels['env'][env])

 puts "Env #{env} already exists."

 env = labels['env'][env]

 else

 puts "Creating env #{env}..."

 href = create_label(creds,"env",env)['href']

 labels['env'][env] = href

 env = href

 end

 else

 puts "Env not specified."

 env = nil

 end

 # Get the loc HREF, or create it if it doesn't already exist.

 if (loc != nil)

 if (labels['loc'][loc])

 puts "Loc #{loc} already exists."

 loc = labels['loc'][loc]

 else

 puts "Creating loc #{loc}..."

 href = create_label(creds,"loc",loc)['href']

 labels['loc'][loc] = href

 loc = href

 end

 else

 puts "Loc not specified."

 loc = nil

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 116

end

 puts "Creating unmanaged workload #{name}...\n\n"

 wl = create_umw(creds,name,hostname,ip,

 role,app,env,loc);

 end

end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 117

Chapter 9 Source Code

#!/usr/bin/env ruby

infected_ip = "10.10.10.10"

require 'json'

require 'rest-client'

require 'csv'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

qrole = "quarantine"

qapp = "quarantine"

qenv = "quarantine"

qloc = "quarantine"

This object holds credentials for a PCE.

class Creds

 attr_accessor :login, :passwd, :pce, :port, :org

 def initialize(login, passwd, pce, org, port=443)

 @login = login

 @passwd = passwd

 @pce = pce

 @port = port.to_s

 @org = org

 end

 def url_with_api(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1/#{rest}")

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 118

 end

 def url_with_org(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1#{@org}/#{rest}")

 end

end

Makes a synchronous API call using a pre-populated Creds object, a

type (:get, :post, :put, :delete), the specific call you're making

to the API (such as "/labels"), whether you want the org specified

as part of the full URL or not (this will be nil when supplying a

full HREF for "resource"), and an optional payload (this will be

ignored in cases it makes no sense).

def sync_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => type,

 :payload => payload,

 :user => creds.login,

 :password => creds.passwd,

 :verify_ssl => false,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

 if (response.to_s() != "")

 return(JSON.parse(response))

 else

 return "ok"

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 119

 end

end

Makes an asynchronous API call using a pre-populated Creds object, a

type (async calls can only be of type :get, but the field is still

here for consistency with the sync api call, however this value will

be ignored), the specific call you're making to the API (such as

"/labels"), whether you want the org specified as part of the full

URL or not (this will be nil when supplying a full HREF for

"resource"), and an optional payload (payloads make no sense for async

GET calls, so this field will be ignored).

def async_api(creds,type,resource,org,payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => :get,

 :user => creds.login,

 :password => creds.passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

 sleep(response.headers[:retry_after].to_i)

 monitor_url = response.headers[:location]

 status = ""

 while (status != "done" and status != "failed")

 response = sync_api(creds,:get,monitor_url,nil)

 status = response['status']

 sleep 1 unless (status == "done" or status == "failed")

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 120

 return (sync_api(creds,:get,response["result"]["href"],nil))

end

Return a hash of hashes containing all labels and their HREFs.

def get_all_labels(creds)

 response = sync_api(creds,:get,"/labels",true)

 if (response.length == 500)

 response = async_api(creds,:get,"/labels",true)

 end

 labels = Hash.new()

 labels['role'] = Hash.new()

 labels['app'] = Hash.new()

 labels['env'] = Hash.new()

 labels['loc'] = Hash.new()

 response.each do |resp|

 if (resp['key'] == "role")

 labels['role'][resp['value']] = resp['href']

 end

 if (resp['key'] == "app")

 labels['app'][resp['value']] = resp['href']

 end

 if (resp['key'] == "env")

 labels['env'][resp['value']] = resp['href']

 end

 if (resp['key'] == "loc")

 labels['loc'][resp['value']] = resp['href']

 end

 end

 return(labels)

end

Return a hash of all workloads indexed by HREF.

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 121

def get_all_workloads(creds)

 workloads = Hash.new()

 response = sync_api(creds,:get,"/workloads",true)

 if (response.length == 500)

 response = async_api(creds,:get,"/workloads",true)

 end

 response.each do |wl|

 workloads[wl['href']] = wl

 end

 return(workloads)

end

Given an IP address and the hash of all workloads, return an array

of HREFs of workloads using this IP (in theory, it should always be

zero or one result, but we allow for more for odd circumstances).

def find_ip_in_workloads(ip,workloads)

 matches = Array.new()

 workloads.keys.each do |wl|

 if(workloads[wl]['public_ip'] == ip)

 matches.push(wl)

 end

 workloads[wl]['interfaces'].each do |iface|

 if(iface['address'] == ip)

 matches.push(wl)

 end

 end

 end

 return(matches.uniq())

end

Create a Creds object holding everything we need to know about a PCE.

creds = Creds.new(login,passwd,pce,org_href,port)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 122

Fetch all of the labels from the PCE.

labels = get_all_labels(creds)

Grab the HREFs we need for the specified quarantine labels.

qrole_href = labels['role'][qrole]

qapp_href = labels['app'][qapp]

qenv_href = labels['env'][qenv]

qloc_href = labels['loc'][qloc]

Make sure we found the specified labels in the PCE.

unless(qrole_href and qapp_href and qenv_href and qloc_href)

 puts "Unable to locate specified quarantine labels."

 exit(1)

end

Fetch all workloads from the PCE.

workloads = get_all_workloads(creds)

Find the specified workload(s).

infected = find_ip_in_workloads(infected_ip, workloads)

Make sure we found the specified IP. If we did find it, change it's

labels to the quarantine labels. If we didn't find it, create an

unmanaged workload to represent it, then set the labels of that

unmanaged workload to the quarantine labels.

lab = Array.new()

lab.push ({"href" => qrole_href})

lab.push ({"href" => qapp_href})

lab.push ({"href" => qenv_href})

lab.push ({"href" => qloc_href})

if(infected == [])

 puts "Creating new quarantined workload: infected_host_#{infected_ip}"

 wl = {"name" => "infected_host_" + infected_ip,

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 123

 "hostname" => "bad",

 "public_ip" => infected_ip,

 "interfaces" => [

 {"name" => "eth0",

 "address" => infected_ip,

 "cidr_block" => 32,

 "link_state" => "up"}],

 "online" => true,

 "labels" => lab }

 sync_api(creds,:post,"/workloads",true,wl.to_json)

else

 puts "Quarantining existing workload: #{infected_ip}"

 wl = { "labels" => lab }

 sync_api(creds,:put,infected[0],nil,wl.to_json)

end

Local Variables:

mode: Ruby

coding: utf-8

End:

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 124

Chapter 10 Source Code

#!/usr/bin/env ruby

coding: utf-8

require 'json'

require 'rest-client'

require 'csv'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

pprofile_name = "Pair Me"

pprofile_app = "Boondoggle"

pprofile_env = "Production"

pprofile_loc = "Addis Ababa"

This object holds credentials for a PCE.

class Creds

 attr_accessor :login, :passwd, :pce, :port, :org

 def initialize(login, passwd, pce, org, port=443)

 @login = login

 @passwd = passwd

 @pce = pce

 @port = port.to_s

 @org = org

 end

 def url_with_api(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1/#{rest}")

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 125

 def url_with_org(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1#{@org}/#{rest}")

 end

end

Makes a synchronous API call using a pre-populated Creds object, a

type (:get, :post, :put, :delete), the specific call you're making

to the API (such as "/labels"), whether you want the org specified

as part of the full URL or not (this will be nil when supplying a

full HREF for "resource"), and an optional payload (this will be

ignored in cases it makes no sense).

def sync_api(creds, type, resource, org, payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => type,

 :payload => payload,

 :user => creds.login,

 :password => creds.passwd,

 :verify_ssl => false,

 :headers => {:accept => :json,

 :content_type => :json}).execute()

 if (response.to_s() != "")

 return(JSON.parse(response))

 else

 return "ok"

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 126

end

Makes an asynchronous API call using a pre-populated Creds object, a

type (async calls can only be of type :get, but the field is still

here for consistency with the sync api call, however this value will

be ignored), the specific call you're making to the API (such as

"/labels"), whether you want the org specified as part of the full

URL or not (this will be nil when supplying a full HREF for

"resource"), and an optional payload (payloads make no sense for async

GET calls, so this field will be ignored).

def async_api(creds, type, resource, org, payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => :get,

 :user => creds.login,

 :password => creds.passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

 sleep(response.headers[:retry_after].to_i)

 monitor_url = response.headers[:location]

 status = ""

 while (status != "done" and status != "failed")

 response = sync_api(creds, :get, monitor_url, nil)

 status = response['status']

 sleep 1 unless (status == "done" or status == "failed")

 end

 return (sync_api(creds, :get, response["result"]["href"], nil))

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 127

end

Given a type ("role", "app", "env", or "loc"), a name, and a creds

object, create a label with the specified name. Does not check to

see if a label of the specified type and name already exist, and

fails if this is the case.

def create_label(type, name, creds)

 return(sync_api(creds, :post, "/labels", true, {"key" => type, "value"

=> name}.to_json))

end

Return a hash of hashes containing all labels and their HREFs.

def get_all_labels(creds)

 response = sync_api(creds, :get, "/labels", true)

 labels = Hash.new()

 labels['role'] = Hash.new()

 labels['app'] = Hash.new()

 labels['env'] = Hash.new()

 labels['loc'] = Hash.new()

 response.each do |resp|

 if (resp['key'] == "role")

 labels['role'][resp['value']] = resp['href']

 end

 if (resp['key'] == "app")

 labels['app'][resp['value']] = resp['href']

 end

 if (resp['key'] == "env")

 labels['env'][resp['value']] = resp['href']

 end

 if (resp['key'] == "loc")

 labels['loc'][resp['value']] = resp['href']

 end

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 128

 return(labels)

end

Create a Creds object holding everything we need to know about a PCE.

creds = Creds.new(login, passwd, pce, org_href,port)

Fetch all of the labels from the PCE.

labels = get_all_labels(creds)

Make the new labels for our McMurdo service (if needed). Also, store

the data for the new services we create in the global 'labels' var

for future reference.

unless labels["app"][pprofile_app]

 labels["app"][pprofile_app]=create_label("app", pprofile_app,

creds)["href"]

end

unless labels["env"][pprofile_env]

 labels["env"][pprofile_env]=create_label("env", pprofile_env,

creds)["href"]

end

unless labels["loc"][pprofile_loc]

 labels["loc"][pprofile_loc]=create_label("loc", pprofile_loc,

creds)["href"]

end

pprofile = Hash.new()

pprofile["name"] = pprofile_name

pprofile["enabled"] = true

pprofile["mode"] = "illuminated"

pprofile["key_lifespan"] = 86400

pprofile["allowed_uses_per_key"] = "unlimited"

pprofile["role_label_lock"] = false

pprofile["app_label_lock"] = true

pprofile["env_label_lock"] = true

pprofile["loc_label_lock"] = true

pprofile["mode_lock"] = false

pprofile["log_traffic"] = true

pprofile["log_traffic_lock"] = true

pprofile["visibility_level"] = "flow_summary"

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 129

pprofile["visibility_level_lock"] = true

lab = Array.new()

lab.push({"href"=>labels["app"][pprofile_app]})

lab.push({"href"=>labels["loc"][pprofile_loc]})

lab.push({"href"=>labels["env"][pprofile_env]})

pprofile["labels"] = lab

Now push the pairing profile to the PCE. If it already exists (or if

there is any other error), this fails.

result = sync_api(creds, :post, "/pairing_profiles",

 true, pprofile.to_json)["href"]

href = result["href"]

Fetch and print the activation code.

result = sync_api(creds, :post, href + "/pairing_key",

 false, {}.to_json)

activation_code = result["activation_code"]

puts "Activation code: #{activation_code}"

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 130

Chapter 11 Source Code

#!/usr/bin/env ruby

coding: utf-8

require 'json'

require 'rest-client'

require 'csv'

login = "api_1ea0799f8bd486c8e"

passwd =

"6c1dbf2971aa1ff1a45b142fa86fc6040eeb9bbbe1957d4a977225bdf02d400d"

pce = "illumio.company.com"

port = "443"

org_href = "/orgs/9"

ring_app = "Refrigeration"

ring_env = "Production"

ring_loc = "McMurdo"

ring_role = "thing"

ring_ruleset = "fridge"

ring_port = "42"

ring_proto = "17"

ring_service = "fridgeomatic"

ring_allowed_net = "10.246.0.1"

ring_allowed_netmask = "32"

ring_allowed_name = "fridge_command_central"

This object holds credentials for a PCE.

class Creds

 attr_accessor :login, :passwd, :pce, :port, :org

 def initialize(login, passwd, pce, org, port=443)

 @login = login

 @passwd = passwd

 @pce = pce

 @port = port.to_s

 @org = org

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 131

 def url_with_api(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1/#{rest}")

 end

 def url_with_org(rest)

 if(rest[0] == "/")

 rest = rest[1..-1]

 end

 return("https://#{@pce}:#{@port}/api/v1#{@org}/#{rest}")

 end

end

Makes a synchronous API call using a pre-populated Creds object, a

type (:get, :post, :put, :delete), the specific call you're making

to the API (such as "/labels"), whether you want the org specified

as part of the full URL or not (this will be nil when supplying a

full HREF for "resource"), and an optional payload (this will be

ignored in cases it makes no sense).

def sync_api(creds, type, resource, org, payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => type,

 :payload => payload,

 :user => creds.login,

 :password => creds.passwd,

 :verify_ssl => false,

 :headers => {:accept => :json,

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 132

 :content_type => :json}).execute()

 if (response.to_s() != "")

 return(JSON.parse(response))

 else

 return "ok"

 end

end

Makes an asynchronous API call using a pre-populated Creds object, a

type (async calls can only be of type :get, but the field is still

here for consistency with the sync api call, however this value will

be ignored), the specific call you're making to the API (such as

"/labels"), whether you want the org specified as part of the full

URL or not (this will be nil when supplying a full HREF for

"resource"), and an optional payload (payloads make no sense for async

GET calls, so this field will be ignored).

def async_api(creds, type, resource, org, payload = nil)

 api = ""

 if (org)

 api = creds.url_with_org(resource)

 else

 api = creds.url_with_api(resource)

 end

 response = RestClient::Request.new(

 :url => api,

 :method => :get,

 :user => creds.login,

 :password => creds.passwd,

 :headers => {"Prefer" => "respond-async",

 :accept => :json,

 :content_type => :json}).execute()

 sleep(response.headers[:retry_after].to_i)

 monitor_url = response.headers[:location]

 status = ""

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 133

 while (status != "done" and status != "failed")

 response = sync_api(creds, :get, monitor_url, nil)

 status = response['status']

 sleep 1 unless (status == "done" or status == "failed")

 end

 return (sync_api(creds, :get, response["result"]["href"], nil))

end

A wrapper around sync_api and async_api (see one of those calls

above for parameter info). First makes a sync API call, and if it

was a :get call and the result contains 500 (or more, in case API

limits are changed) values, makes the same call with the async

API. Best to call the "right" call yourself from an efficiency of

execution standpoint, but makes code easier to write and understand

if you don't mind the (potential) extra load on your PCE.

def call_api(creds, type, resource, org, payload = nil)

 response = sync_api(creds, type, resource, org, payload)

 if (response.length >= 500 and type == :get)

 response = async_api(creds, type, resource, org, payload)

 end

 return(response)

end

Given a type ("role", "app", "env", or "loc"), a name, and a creds

object, create a label with the specified name. Does not check to

see if a label of the specified type and name already exist, and

fails if this is the case.

def create_label(type, name, creds)

 return(call_api(creds, :post, "/labels", true, {"key" => type, "value"

=> name}.to_json))

end

Return a hash of hashes containing all labels and their HREFs.

def get_all_labels(creds)

 response = call_api(creds, :get, "/labels", true)

 labels = Hash.new()

 labels['role'] = Hash.new()

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 134

 labels['app'] = Hash.new()

 labels['env'] = Hash.new()

 labels['loc'] = Hash.new()

 response.each do |resp|

 if (resp['key'] == "role")

 labels['role'][resp['value']] = resp['href']

 end

 if (resp['key'] == "app")

 labels['app'][resp['value']] = resp['href']

 end

 if (resp['key'] == "env")

 labels['env'][resp['value']] = resp['href']

 end

 if (resp['key'] == "loc")

 labels['loc'][resp['value']] = resp['href']

 end

 end

 return(labels)

end

Given the name of a variable, a desired value, and a an array of

things to search through, return a list of array entries that

match. Useful for searching through services, IP lists, labels,

etc. for a desired match. If HREF is true, return a list of HREFs

instead of a list of full matches. Most commonly used to search for

matches to "name". Returns an array, as it's legal to have multiple

items with the same name (unfortunately).

def find_var(var, value, stuff, href = false)

 if href

 return((stuff.select {|thing| thing[var] == value}).map {|thing|

thing["href"]})

 else

 return(stuff.select {|thing| thing[var] == value})

 end

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 135

end

Create a simple service. Simple, meaning only one port and

protocol. Services can actually have an arbitrary number of ports

and protocols (as well as ranges), and can even specify process

names, but we're keeping this example simple. Note that proto is the

protocol number, not the name. TCP==6 and UDP==17.

def create_simple_service(name, port, proto, creds)

 return(call_api(creds, :post, "/sec_policy/draft/services", true,

 {"name" => name,

 "service_ports" =>

 [{"port" => port.to_i,

 "protocol" => proto.to_i}]}.to_json))

end

Create a simple IP List. Simple, meaning only one address or subnet.

IP Lists can actually have an arbitrary number of addresses and

subnets, including exclusions, but we're keeping it simple.

def create_simple_iplist(name, address, subnet, creds)

 addr = address + "/" + subnet

 return(call_api(creds, :post, "/sec_policy/draft/ip_lists", true,

 {"name" => name,

 "ip_ranges" =>

 [{"from_ip" => addr,

 "exclusion" => false}]}.to_json))

end

Create a Creds object holding everything we need to know about a PCE.

creds = Creds.new(login, passwd, pce, org_href,port)

Fetch all of the labels from the PCE.

labels = get_all_labels(creds)

Fetch all of the services from the PCE.

services = call_api(creds, :get, "/sec_policy/draft/services", true)

Fetch all of the IP Lists from the PCE.

iplists = call_api(creds, :get, "/sec_policy/draft/ip_lists", true)

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 136

Make the new labels for our McMurdo service (if needed). Also, store

the data for the new services we create in the global 'labels' var

for future reference.

unless labels["app"][ring_app]

 labels["app"][ring_app]=create_label("app", ring_app, creds)["href"]

end

unless labels["env"][ring_env]

 labels["env"][ring_env]=create_label("env", ring_env, creds)["href"]

end

unless labels["loc"][ring_loc]

 labels["loc"][ring_loc]=create_label("loc", ring_loc, creds)["href"]

end

Create the service if it doesn't already exist. Note that this is

somewhat dumb, as it will find *any* service with the specified

name, which isn't necessarily the one you want. Somebody could have

created another service with the same name.

if (find_var("name", ring_service, services, true).length == 0)

 services.push(create_simple_service(ring_service, ring_port, ring_proto,

creds))

end

Create the IP List if it doesn't already exist. Note that like the

service creation above, this is somewhat dumb, as it will find *any*

IP List with the specified name, which isn't necessarily the one you

want. Somebody could have created another IP List with the same

name.

if (find_var("name", ring_allowed_name, iplists, true).length == 0)

 iplists.push(create_simple_iplist(ring_allowed_name,

 ring_allowed_net,

 ring_allowed_netmask,

 creds))

end

The ruleset hash will hold the new ruleset until we push it to the

PCE.

ruleset = Hash.new()

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 137

Set a few basic things in the ruleset.

ruleset["name"] = ring_ruleset

ruleset["enabled"] = true

Set the scope(s) for the ruleset. Just one scope for this example,

though there can be more than one.

scope = Array.new()

scope.push({"label"=>{"href"=>labels["app"][ring_app]}})

scope.push({"label"=>{"href"=>labels["loc"][ring_loc]}})

scope.push({"label"=>{"href"=>labels["env"][ring_env]}})

ruleset["scopes"] = [scope]

The rules array will hold new rules while they're built. Each rule

is added to the ruleset object as each rule is finished.

rules = Array.new()

Build up the first rule, then add it to the rules array.

rule = Hash.new()

rule["enabled"] = true

rule["sec_connect"] = true

rule["unscoped_consumers"] = false

rule["providers"] = [{"actors" => "ams"}]

rule["consumers"] = [{"actors" => "ams"}]

rule["service"] = {"href" => find_var("name", "All Services", services,

true)[0]}

rule["ub_service"] = {"href" => find_var("name", "All Services", services,

true)[0]}

rules.push(rule)

Now build up the second rule, then add it to the rules array, also.

rule = Hash.new()

rule["enabled"] = true

rule["sec_connect"] = false

rule["unscoped_consumers"] = false

rule["providers"] = [{"label" => {"href" => labels['role'][ring_role]}}]

rule["consumers"] = [{"ip_list" => {"href" => find_var("name",

ring_allowed_name, iplists, true)[0]}}]

rule["service"] = {"href" => find_var("name", ring_service, services,

true)[0]}

http://www.illumio.com/

Version 2 © 2017 Illumio, All Rights Reserved. www.illumio.com 138

rule["ub_service"] = {"href" => find_var("name", "All Services", services,

true)[0]}

rules.push(rule)

Now add the rules to the ruleset.

ruleset["rules"] = rules

Now push the whole ruleset to the PCE. If it already exists (or if

there is any other error), this fails.

response = call_api(creds, :post, "/sec_policy/draft/rule_sets", true,

ruleset.to_json)

Last, but not least, we need to provision the changes we've

made. Note that the following will provision *ALL* outstanding

changes. It's certainly possible that this means provisioning

changes made by other users who may be logged in at the same time we

are. Solving this is left as an exercise for the user.

response = call_api(creds, :post, "/sec_policy", true, {"commit_message"

=> "penguins rule"}.to_json)

http://www.illumio.com/

