
Illumio Core for Kubernetes and OpenShift

July 2024

25000-100-5.1.7

Illumio Core®

Compatible PCE Versions: 23.5.10 and later

Core for Kubernetes and OpenShift
Version: 5.1

Illumio Core for Kubernetes and OpenShift 5.1 2

Legal Notices

Copyright © 2024 Illumio 920 De Guigne Drive, Sunnyvale, CA 94085. All rights
reserved.

The content in this documentation is provided for informational purposes only and is
provided "as is," without warranty of any kind, expressed or implied of Illumio. The
content in this documentation is subject to change without notice.

Product Versions

 Core for Kubernetes and OpenShift Version: 5.1

Compatible PCE Versions: 23.5.10 and later

Standard versus LTS Releases

For information on Illumio software support for Standard and LTS releases, see Ver-
sions and Releases on the Illumio Support portal.

Resources

Legal information, see https://www.illumio.com/legal-information

Trademarks statements, see https://www.illumio.com/trademarks

Patent statements, see https://www.illumio.com/patents

License statements, see https://www.illumio.com/eula

Open source software utilized by the Illumio Core and their licenses, see Open Source
Licensing Disclosures in the Illumio Core Technical Documentation portal.

Contact Information

To contact Illumio, go to https://www.illumio.com/contact-us

To contact the Illumio legal team, email us at legal@illumio.com

To contact the Illumio documentation team, email us at doc-feedback@illumio.com

https://support.illumio.com/software/versions-and-releases.html
https://support.illumio.com/software/versions-and-releases.html
https://www.illumio.com/legal-information
https://www.illumio.com/trademarks
https://www.illumio.com/patents
https://www.illumio.com/eula
https://www.illumio.com/contact-us
mailto:legal@illumio.com
mailto:doc-feedback@illumio.com?subject=Feedback or questions for Illumio Diocumentation team

Illumio Core for Kubernetes and OpenShift 5.1 3

Contents

Chapter 1 Overview of Containers in Illumio Core 8

About This Guide 8

How to Use This Guide 8

Recommended Skills 9

Architecture 9

Containerized VEN (C-VEN) 10

Kubelink 10

Cluster Local Actor Store (CLAS) 11

CLAS Degraded Mode 12

Kubernetes Workloads 13

Container Workloads 13

Workloads 14

Virtual Services 14

Container Cluster 14

Container Workload Profiles 15

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later) 17

Helm Chart Deployment Overview 18

Host and Cluster Requirements 18

Supported Configurations for On-premises and IaaS 19

Privileges 19

Prepare Your Environment 20

Unique Machine ID 20

Create Labels 21

Create a ConfigMap to Store Your Root CA Certificate 21

Configure Calico in Append Mode 26

Create a Container Cluster in the PCE 27

Create a Container Cluster 27

Configure a Container Workload Profile Template 28

Create a Pairing Profile for Your Cluster Nodes 29

Map Kubernetes Node Labels to Illumio Labels 30

Label Mapping CRD 30

Example Label Map 30

Deploy with Helm Chart 31

Important Optional Parameters 33

Illumio Core for Kubernetes and OpenShift 5.1 4

Re-Label Your Cluster Nodes 36

Generating YAML Manifests for Manual Deployment 36

Install Helm Tool 37

Generate Files 37

Remove Unpair DaemonSet and Job Objects 38

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier 39

Host and Cluster Requirements 39

Supported Configurations for On-premises and IaaS 39

Privileges 40

Prepare Your Environment 41

Unique Machine ID 42

Create Labels 42

Push Kubelink and C-VEN Images to Your Container Registry 43

Create Illumio Namespace 44

Authenticate Kubernetes Cluster with Container Registry 45

Create a ConfigMap to Store Your Root CA Certificate 46

Configure Calico in Append Mode 50

Create a Container Cluster in the PCE 51

Create a Container Cluster 51

Configure a Container Workload Profile Template 52

Deploy Kubelink in Your Cluster 53

Prerequisites 53

Configure Kubelink Secret 53

Deploy Kubelink 55

Deploy C-VENs in Your Cluster 59

Prerequisites 59

Create a Pairing Profile for Your Cluster Nodes 60

Configure C-VEN Secret 60

Deploy C-VENs 62

Re-Label Your Cluster Nodes 67

Chapter 3 Configure Labels for Namespaces, Pods, and Services 69

Use Container Workload Profiles 69

Configure New Container Workload Profiles 70

Dynamic Creation of a Profile 71

Manual Pre-creation of a Profile 72

Set Enforcement 73

Illumio Core for Kubernetes and OpenShift 5.1 5

Labels Restrictions for Kubernetes Namespaces 73

Using Annotations 79

Deployments 80

Services 80

DaemonSets and Replicasets 84

Using Annotations in CLAS 88

Chapter 4 Configure Security Policies for Containerized Environment 90

IP and FQDN Lists 90

FQDN Services for Kubernetes 90

IP Lists for Kubernetes 91

FQDN Services for OpenShift 92

IP Lists for OpenShift 92

Rules for Kubernetes or OpenShift Cluster 93

Kubernetes 94

OpenShift 96

Rules for Containerized Applications 98

Access Services from within the Cluster 98

Access Services from Outside the Cluster 100

Outbound Connections 104

Liveness Probes 105

NodePort Support on Kubernetes and OpenShift 106

Rules and Traffic Considerations with CLAS 107

Mandatory Rules 107

ClusterIP Rules 107

General Traffic View Changes 108

CLAS Traffic Limitations 108

Rules for Persistent Storage 109

Kubernetes 109

OpenShift 110

Local Policy Convergence Controller 111

About the Controller Behavior 111

Configure the Illumio Readiness Gate 112

Timer Customization 112

Track the State of the Readiness Gate 114

Firewall Coexistence on Pods 116

Chapter 5 Upgrade and Uninstallation 119

Illumio Core for Kubernetes and OpenShift 5.1 6

Migrate from Previous C-VEN Versions (21.5.15 or Earlier) 120

Annotate and Label Resources 120

Delete C-VEN DaemonSet 122

Install Helm 122

Upgrade and Uninstall Helm Chart Deployments 122

Upgrade Helm Chart Deployments 123

Uninstall Helm Chart Deployments 123

Upgrade and Uninstall Non-Helm Chart Deployments 124

Upgrade Illumio Components 124

Uninstall Illumio from Your Cluster 125

Upgrade to CLAS Architecture 127

Pre-upgrade Policy Check 128

Upgrade Strategy 129

Upgrade Steps (on Each Kubernetes Cluster) 129

Chapter 6 Reference: General 132

Troubleshooting 132

Helm deployment (and uninstall) fails with C-VEN stuck in Con-
tainerCreating state 132

Failed Authentication with the Container Registry 133

Kubelink Pod in CrashLoopBackOff State 136

Container Cluster in Error 137

Pods and Services Not Detected 139

Pods Stuck in Terminating State 139

Enable Firewall Coexistence 140

Troubleshooting CLAS Mode Architecture 141

Known Limitations 144

Kubelink Monitoring and Troubleshooting 146

Kubelink Process 146

Kubelink Startup Log Messages 146

Verify Kubelink Deployment 152

PCE-Kubelink Connection and Heartbeat 154

Additional Kubelink Monitoring 154

Setting Log Verbosity 154

Aggregating Logs from Kubelink and C-VEN Pods 155

Loki and Grafana 155

Fluent Bit 156

Illumio Core for Kubernetes and OpenShift 5.1 7

Chapter 7 Reference: OpenShift Deployment 160

Prepare OpenShift for Illumio Core 160

Unique Machine ID 160

Create Labels 161

Create Pairing Profiles 161

Deploy Kubelink 162

Prerequisites 162

Create Container Cluster 162

Configure Container Workload Profile 163

Configure Kubelink Secret 164

Deploy Kubelink 166

Implement Kubelink with a Private PKI 168

Prerequisites 168

Download the Root CA Certificate 169

Create a configmap in Kubernetes Cluster 172

Modify Kubelink Manifest File to Use Certificate 173

Install and Pair VENs for Containers 174

Manage OpenShift Namespaces 175

Container Workload Profiles 176

Using Annotations 176

Daemonsets and Replicasets 181

Illumio Core for Kubernetes and OpenShift 5.1 8

Overview of Containers in Illumio Core

This chapter contains the following topics:

About This Guide 8

Architecture 9

This section describes the architecture, key concepts, and the integration require-
ments to use Illumio Core with Kubernetes or OpenShift.

About This Guide

How to Use This Guide
This guide explains how deploy the Illumio Core with Kubernetes or OpenShift on your
distributed, on-premises and cloud systems.

The guide provides the details to complete the following tasks:

 l Preparing your environment

 l Creating a container cluster in the PCE

 l Deploying Kubelink and C-VENs in your cluster

 l Configuring labels for namespaces, pods, and services

 l Configuring security policies for containerized environments

 l Upgrading and Uninstalling the C-VEN in your containerized environments

 l Migrating to a Helm Chart deployment from a previously-installed C-
VEN deployment

Chapter 1

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 9

Recommended Skills
This guide assumes that you have a thorough understanding of the following tech-
nologies and concepts:

 l Illumio Core

 l Linux shell (bash)

 l TCP/IP networks, including protocols and well-known ports and a familiarity
with PKI certificates

 l Docker concepts, such as containers, container images, and docker commands.
For more information, see Get Started with Docker.

 l Red Hat OpenShift Container Platform. For more information, see OpenShift
Documentation.

 l Kubernetes concepts, such as clusters, Pod, and services. For more
information, see Kubernetes Documentation.

Architecture
With the increased adoption of containers, the threat of unauthorized lateral move-
ment from vulnerabilities and exploits increases considerably in the east-west attack
surface. In addition, consumers and providers may be other containers, bare-metal
servers, or virtual machines running on-premises or in the cloud. Multiple disparate
solutions create complexity in management and operational workflow, leaving your
organization more open to attack.

Illumio Core provides a homogenous segmentation solution for your applications
regardless of where they are running - bare-metal servers, virtual machines, or con-
tainers. It is a single unified solution with many points of integration, including how
you can easily and quickly secure your applications regardless of their location or
form.

A container is a loosely defined construct that abstracts a group of processes into an
addressable entity, which can run application instances inside it. Containers are imple-
mented using Linux namespaces and cgroups, allowing you to virtualize and limit sys-
tem resources. Since containers operate at a process-level and share the host OS,
they require fewer resources than virtual machines. The isolation mechanism provided
through Linux namespaces allows containers to have unique IP addresses. Illumio
Core uses these mechanisms to program iptables in the network namespace.

https://docs.docker.com/get-started/
https://docs.openshift.com/?extIdCarryOver=true&sc_cid=701f2000001OH74AAG
https://docs.openshift.com/?extIdCarryOver=true&sc_cid=701f2000001OH74AAG
https://kubernetes.io/docs/home/?path=users&persona=app-developer&level=foundational

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 10

Kubernetes-based orchestration platforms such as native Kubernetes and Red Hat
OpenShift integrate with Illumio Core by using the following two components in the
cluster:

 l Kubelink - An Illumio software component that listens to events stream on the
Kubernetes API server.

CLAS - (Cluster Local Actor Store) A new architecture introduced in Core for
Kubernetes 5.0.0, When Kubelink is enabled with CLAS, it tracks Pods at the
Kubernetes Workload level, and dispenses any existing policy for them, reducing
the load on and interaction with the Policy Compute Engine (PCE), which
improves scalability, responsiveness, and overall system performance.

 l Containerized VEN (C-VEN) - An Illumio software component that provides vis-
ibility and enforcement on the nodes and the Pods.

The following sections describe some key concepts of the Illumio Core for Kubernetes
solution, including more details about its main components, the C-VEN and Kubelink.

Containerized VEN (C-VEN)
The C-VEN provides visibility and enforcement on nodes and Pods. In a standard Illu-
mio deployment the Virtual Enforcement Node (VEN) is installed on the host as a
package. In contrast, the C-VEN is not installed on the host but runs as a Pod on the
Kubernetes nodes. The C-VEN functions in the same manner as a standard Illumio
VEN. However, in order to program iptables on the node and Pods namespaces, the C-
VEN requires privileged access to the host. For details on the privileges required by
the C-VEN, see Privileges .

The C-VENs are delivered as a DaemonSet, with one replica per host in the Kuber-
netes cluster. A C-VEN Pod instance is required on each node in the cluster to ensure
proper segmentation in your environment. In self-managed deployments, C-VENs are
deployed on all nodes in the cluster. In cloud-managed deployments, C-VENs are
deployed only on the Worker nodes and not on the Master nodes (Master nodes are
not managed by Cloud customers).

Kubelink
Kubelink is a software component provided by Illumio to make the integration
between the PCE and Kubernetes easier. Starting in Illumio Core for Kubernetes 5.0.0,
Kubelink is enhanced with a Cluster Local Actor Store (CLAS) module, that handles
the workload-to-Pod relationship via C-VEN communication. See Cluster Local Actor

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 11

Store (CLAS) below for details on how Kubelink in CLAS mode operates. The
remainder of this description of Kubelink describes its basic, non-CLAS behavior.

Kubelink queries Kubernetes APIs to discover nodes, networking details, and services
and synchronizes them between the Kubernetes cluster and the PCE. Kubelink reports
network information to the PCE, enabling the PCE to understand the cluster network
for both the hosts and the Pods in the cluster. This enables the PCE to both accurately
visualize the communication flow and create the correct policies for the C-VENs to
implement in the iptables of the host and the Pods. It provides flexibility in the type of
networking used with the cluster. Kubelink also associates C-VENs with the particular
container cluster by matching a unique identifier of the underlying OS called machine-
id reported by each C-VEN with the one reported by the Kubernetes cluster.

Kubelink is delivered as a Deployment with only one replica within the Kubernetes
cluster. One Kubelink Pod instance is required per cluster. There is no node affinity
required for Kubelink, so the Kubelink Pod can be spun up on either a Master or
Worker node.

Cluster Local Actor Store (CLAS)
A Cluster Local Actor Store (CLAS) mode is introduced into the architecture of Illumio
Core for Kubernetes 5.0.0. When this mode is enabled, Kubelink still interacts with the
Kubernetes API to track and manage Kubernetes components, and their interaction
with PCE and C-VENs. This includes policy flowing from PCE to C-VENs, and traffic
flowing from C-VENs to PCE.

Within the CLAS architecture, Kubelink provides greater scalability, faster respons-
iveness, and streamlined policy convergence with several key improvements. For
example:

 l Kubelink now discovers that a new Pod is being created directly from a Kuber-
netes API event. While Kubernetes (via Kubelet) continues with the process of
downloading the proper images, and starting the Pod, Kubelink in CLAS mode is
in parallel delivering policy for the emerging Pod to the proper C-VEN to apply.

Because CLAS stores (caches) all existing policies that have been calculated, C-
VENs can get matching policies directly from the CLAS cache without needing
to communicate with the PCE, which also improves convergence times.

 l With Kubelink now a full intermediary between the PCE and the C-VENs, and
maintaining a store of workload data, the C-VENs report traffic flow not to the
PCE directly, but now to Kubelink, which "decorates" the flows with the proper

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 12

Workload IDs based on IP addresses on either end, and then sends this inform-
ation to the PCE.

The following graphic illustrates the basic difference between the new
CLAS architecture and the legacy non-CLAS architecture:

CLAS Degraded Mode
To ensure robustness of policy enforcement and traffic flow in the CLAS architecture,
Kubelink and C-VEN can operate in degraded mode. If a CLAS-enabled Kubelink
detects that its connection with the PCE becomes unavailable (for example, due to
connectivity problems or an upgrade), Kubelink by default enters this degraded
mode.

In degraded mode, new Pods of existing Kubernetes Workloads get the latest policy
version cached in CLAS storage. When Kubelink detects a new Kubernetes Workload
labeled the same way and in the same namespace as an existing Kubernetes Work-
load, Kubelink delivers the existing, cached policy to Pods of this new Workload.

If Kubelink cannot find a cached policy (that is, when labels of a new Workload do not
match those of any existing Workload in the same namespace), Kubelink delivers a
"fail open" or "fail closed" policy to the new Workload based on the Helm Chart para-
meter degradedModePolicyFail. The degraded mode can also be turned on or off by
Helm Chart parameter as well -- disableDegradedMode. For more details on degraded
mode, see the section on "disableDegradedMode and degradedModePolicyFail" in
Deploy with Helm Chart.

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 13

Kubernetes Workloads
Starting in Illumio Core for Kubernetes 5.0.0, the concept of Kubernetes Workloads is
introduced in CLAS-enabled environments as the front-end for the Deployment of an
application or service. In contrast to the Container Workload concept used previously
(and still used in non-CLAS environments), Kubernetes Workloads now closely match
the typical definition of workloads in Kubernetes and similar container orchestration
platforms.

Therefore, Kubernetes Workloads as shown in the PCE Web UI are any workloads that
have Pods, including but not limited to Deployment or DaemonSet workloads. State-
fulSet, DeploymentConfig, ReplicationControler, ReplicaSet, CronJob, Job, Pod, and
ClusterIP are also modeled as Kubernetes Workloads in CLAS mode. Kubernetes
Workloads replace Container Workloads in the non-CLAS mode.

Container Workloads
Container Workloads are reported only in non-CLAS environments. In these envir-
onments, Container Workloads are basic containers (as with Docker), or the smallest
resource that can be assimilated within a container in an orchestration system (as with
Kubernetes). In the context of Kubernetes and OpenShift, a Pod is a container work-
load. Similar to workloads reported in Illumio Core, these container workloads (man-
aged Pods) can have labels assigned to them. Container workloads with their
associated Illumio labels are also displayed in Illumination. In Illumio Core non-CLAS
environments, containers are differentiated based on whether they are on the Pod net-
work or the host network:

 l Containers on the Pod network are considered container workloads and can be
managed similarly to workloads.

 l Containers sharing the host network stack (Pods that are host networked) are
not considered as container workloads and therefore inherit the labels and
policies of the host.

To manage container workloads, you can define the Policy Enforcement mode (Full,
Selective, or Visibility Only) in container workload profiles.

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 14

NOTE:
Container Workloads are relevant only in non-CLAS environments. CLAS-
enabled environments instead use the concept of Kubernetes Workloads in
Illumio Core, which more closely maps to the standard Kubernetes work-
load concept of an application that is run on any number of dynamically-
created (or destroyed) Pods.

Workloads
A workload is commonly referred to as a host OS in Illumio Core. In the context of con-
tainer clusters, a workload is referred to as a node in a container cluster. Usually, a
Kubernetes cluster is composed of two types of nodes:

 l One or more Master Node(s) - In the control plane of the cluster, these nodes
control and manage the cluster.

 l One or more Worker Node(s) - In the data plane of the cluster, these nodes run
the application (containers).

In Illumio Core, Master and Worker nodes are called workloads and are part of a con-
tainer cluster. Labels and policies can be applied to these workloads, similar to any
other workload that does not run containers. For a managed Kubernetes solution, only
the Worker nodes are visible to the administrator and the Master nodes are not dis-
played in the list of Workloads.

Virtual Services
Virtual services are labeled objects and can be utilized to write policies for the respect-
ive services and the member Pods they represent.

Kubernetes services are represented as virtual services in the Illumio policy model.
Kubelink creates a virtual service in the PCE for services in the Kubernetes cluster.
Kubelink reports the list of Replication Controllers, DaemonSets, and ReplicaSets that
are responsible for managing the Pods supporting that service.

In CLAS mode, only NodePort and LoadBalancer services are reported in the
PCE UI as virtual services. Replication Controllers, DaemonSets, and ReplicaSets are
no longer reported as virtual service backends in CLAS.

Container Cluster
A container cluster object is used to store all the information about a Kubernetes
cluster in the PCE by collecting telemetry from Kubelink. Each Kubernetes cluster

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 15

maps to one container cluster object in the PCE. Each Pod network(s) that exists on a
container cluster is uniquely identified on the PCE in order to handle overlapping sub-
nets. This helps the PCE in differentiating between container workloads that may have
the same IP address but are running on two different container clusters. This dif-
ferentiation is required both for Illumination and for policy enforcement.

You can see the workloads that belong to a container cluster in the PCE Web Console.
This mapping between the host workload and the container cluster is done using
machine-ids reported by Kubelink and C-VEN.

Container Workload Profiles
A Container Workload Profile maps to a Kubernetes namespace, and defines:

 l Policy Enforcement state (Full, Selective, or Visibility Only) for the Pods and ser-
vices that belong to the namespace.

 l Labels assigned to the Pods and services. Standard predefined label types were
Role, Application, Environment, and Location. Newer releases of Core allow you
to define your own custom label types and label values for these types.

Once Illumio Core is installed on a container cluster, all namespaces that exist on the
clusters are reported by Kubelink to the PCE and made visible via Container Workload
Profiles. Each time Kubelink detects the creation of a namespace from Kubernetes, a
corresponding Container Workload Profile object gets dynamically created in the
PCE.

After creating a Container Workload Profile, be sure to copy the pairing key that is
automatically generated, and save it. Use this key for the cluster_code Helm Chart para-
meter value when installing.

Each profile can either be in a managed or unmanaged state. The default state for a
profile is unmanaged. The main difference between both states:

 l Unmanaged: no policy applied to Pods by the PCE, and no visibility

 l Managed: policy is controlled by the PCE, and full visibility through Illumination
and traffic explorer

In a CLAS environment, Kubernetes Workloads are displayed only for managed Con-
tainer Workload Profiles.

A Container Workload Profile is a convenient way to dynamically secure new applic-
ations with Illumio Core just by inheriting security policies associated with the scope
of that profile.

Chapter 1 Overview of Containers in Illumio Core
Architecture

Illumio Core for Kubernetes and OpenShift 5.1 16

For more information about Container Workload Profiles, see Use Container Workload
Profiles.

Illumio Core for Kubernetes and OpenShift 5.1 17

Deployment with Helm Chart (Core for
Kubernetes 3.0.0 and Later)

This chapter contains the following topics:

Helm Chart Deployment Overview 18

Host and Cluster Requirements 18

Prepare Your Environment 20

Create a Container Cluster in the PCE 27

Create a Pairing Profile for Your Cluster Nodes 29

Map Kubernetes Node Labels to Illumio Labels 30

Deploy with Helm Chart 31

Re-Label Your Cluster Nodes 36

Generating YAML Manifests for Manual Deployment 36

Chapter 2

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Helm Chart Deployment Overview

Illumio Core for Kubernetes and OpenShift 5.1 18

After you set up your clusters, make sure you do the steps in the order provided in
this section.

NOTE:
Illumio Core for Kubernetes 3.0.0 and later is a combined release of C-VEN
and Kubelink. Starting with C-VEN 21.5.17 and Kubelink 3.0, C-VEN and
Kubelink 3.0 will be only used through the combined release. A Helm Chart
(via quay.io) is used to deploy all necessary product components. If you are
deploying C-VEN 21.5.15 or earlier, instead follow the deployment instruc-
tions in Deployment for C-VEN Versions 21.5.15 or Earlier.

The installation process is mostly the same for Kubernetes and OpenShift,
except a few steps differ. A dedicated section is created for Kubernetes or
OpenShift wherever required.

You also have the option to manually deploy components with YAML manifests that
are first generated by Helm, but are not actually deployed with a Helm chart. See Gen-
erating YAML Manifests for Manual Deployment for details.

Helm Chart Deployment Overview
Starting with the Illumio Core for Kubernetes 3.0.0 release and later, the product
(including C-VEN and Kubelink) is now deployed by using a Helm Chart. The product
components and the Helm Chart are downloaded from a public container repository,
https://quay.io/repository/illumio/illumio.

The basic steps to deploy via Helm Chart are:

 1. Deploy and configure your PCE. (See the PCE Installation and Upgrade Guide.)

 2. Create a container cluster. (See Create a Container Cluster in the PCE.)

 3. Create a pairing profile. (See Create a Pairing Profile for Your Cluster Nodes.)

 4. Deploy Helm Chart. (See Deploy with Helm Chart.) At this stage you can option-
ally map existing Kubernetes labels to Illumio labels.

Follow the sections in the order provided in the rest of this chapter, including the
requirements and environment preparations described next.

Host and Cluster Requirements
To deploy Illumio containers into your environment, you must meet the following
requirements.

https://quay.io/repository/illumio/illumio

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Host and Cluster Requirements

Illumio Core for Kubernetes and OpenShift 5.1 19

Supported Configurations for On-premises and IaaS
For full details on all supported configurations for Illumio Core for Kubernetes version
3.0.0 and later, see the Kubernetes Operator OS Support and Dependencies page on
the Illumio Support Portal (under Software > OS Support).

Privileges
The Helm Chart deployment process automatically sets all necessary privileges. The
privileges listed below must be provided on host-level and cluster-level for the
respective components. They are listed here for reference.

Host-Level

C-VEN

C-VEN requires the following privileges on the host:

 l C-VEN is a privileged container and requires access to the following system
calls:

 o NET_ADMIN

 o SYS_MODULE

 o SYS_ADMIN

 l C-VEN requires persistent storage on the host to write iptables rules and logs.

 l C-VEN mounts volumes on the local host to be able to operate (mount points
may differ depending on the orchestration platform).

Kubelink

Kubelink does not require specific privileges on the host because Kubelink:

 l is not a privileged container

 l is a stateless container

 l does not require persistent storage

Cluster-Level

Namespace

C-VENs and Kubelink are deployed in the illumio-system namespace.

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 20

C-VEN

C-VEN requires the following privileges on the cluster:

 l C-VEN uses the illumio-ven ServiceAccount.

Kubelink

Kubelink requires the following privileges on the cluster:

 l Kubelink creates a new Cluster Role to list and watch events occurring on the
Kubernetes API server for the following elements:

 o nodes

 o hostsubnets

 o replicationcontrollers

 o services

 o replicasets

 o daemonsets

 o namespaces

 o statefulsets

 l Kubelink uses the illumio-kubelink ServiceAccount.

Prepare Your Environment
You need to do these steps before creating clusters or pairing profiles in the PCE, or
subsequent deployment.

CAUTION:
If the prerequisite steps are not done before deployment, then con-
tainerized environments and Kubelink can get disrupted.

Unique Machine ID
Some of the functionality and services provided by the Illumio C-VEN and Kubelink
depend on the Linux machine ID of each Kubernetes cluster node. Each machine ID
must be unique in order to take advantage of the functionality. By default, the Linux
operating system generates a random machine IDto give each Linux host uniqueness.
However, there are cases when machine IDs can be duplicated across machines. This
is common across deployments that clone machines from a golden image, for

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 21

example, spinning up virtual machines from VMware templates, creating compute
instances from a reference image, or from a template from a Public Cloud provider.

IMPORTANT:
Illumio Core requires a unique machine ID on all nodes. This issue is more
likely to occur with on-premises or IaaS deployments, rather than with Man-
aged Kubernetes Services (from Cloud Service Providers). For more inform-
ation on how to create a new unique machine ID, see Troubleshooting.

Create Labels
For details on creating labels, see "Labels and Label Groups" in Security Policy Guide.
The labels shown below are used in examples throughout this document. You are not
required to use the same labels

Name Label Type

Kubernetes Cluster Application

OpenShift Cluster Application

Production Environment

Development Environment

Data Center Location

Cloud Location

Kubelink Role

Node Role

Control Plane Node (formerly Master) Role

Worker Role

NOTE:
Starting in Illumio Core for Kubernetes 4.2.0, you can map Kubernetes
labels to Illumio labels by using a Container Resource Definition in your
illumio-values.yaml with the Helm Chart deployment. See Map Kuber-
netes Node Labels to Illumio Labels for details.

Create a ConfigMap to Store Your Root CA Certificate
This section describes how to implement Kubelink with a PCE using a certificate
signed by a private PKI. It describes how to configure Kubelink and C-VEN to accept
the certificate from the PCE signed by a private root or intermediate Certificate

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 22

Authority (CA), and ensure that Kubelink can communicate in a secure way with the
PCE.

Prerequisites

 l Access to the root CA to download the root CA certificate

 l Access to your Kubernetes cluster and can run kubectl commands

 l Correct privileges in your Kubernetes cluster to create resources like Con-
figMaps, secrets, and Pods

 l Access to the PCE web console as a Global Organization Owner

Download the Root CA Certificate

Before you begin, ensure that you have access to the root CA certificate. The root CA
certificate is a file that can be exported from the root CA without compromising the
security of the company. It is usually made available to external entities to ensure a
proper SSL handshake between a server and its clients.

You can download the root CA certificate in the CRT format on your local machine.
Below is an example of a root CA certificate:

$ cat root.democa.illumio-demo.com.crt
 -----BEGIN CERTIFICATE-----
 MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
 ---output suppressed---
 wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
 -----END CERTIFICATE-----

You can also get the content of your root CA certificate in a readable output format
by using the following command:

$ openssl x509 -text -noout -in ./root.democa.illumio-demo.com.crt
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 fc:34:35:f3:c0:8a:f2:56:e1:89:8a:67:8f:7d:78:76:47:dd:2f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 23

 Validity
 Not Before: Jan 20 00:05:36 2020 GMT
 Not After : Jan 17 00:05:36 2030 GMT
 Subject: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:
 00:c0:e5:48:7d:97:f8:5b:8c:ef:ac:16:a8:8c:aa:
 68:b8:48:af:28:cd:17:8f:02:c8:82:e9:69:62:e2:
 89:2b:be:bd:34:fc:e3:4d:3f:86:5e:d7:e6:89:34:
 71:60:e6:54:61:ac:0f:26:1c:99:6f:80:89:3f:36:
 b3:ad:78:d1:6c:3f:d7:23:1e:ea:51:14:48:74:c3:
 e8:6e:a2:79:b1:60:4c:65:14:2a:f1:a0:97:6c:97:
 50:43:67:07:b7:51:5d:2c:12:49:81:dc:01:c9:d1:
 57:48:32:2e:87:a8:d2:c0:b9:f8:43:b2:58:10:af:
 54:59:09:05:cb:3e:f0:d7:ef:70:cc:fc:53:48:ee:
 a4:a4:61:f1:d7:5b:7c:a9:a8:92:dc:77:74:f4:4a:
 c0:4a:90:71:0f:6d:9e:e7:4f:11:ab:a5:3d:cd:4b:
 8b:79:fe:82:1b:16:27:94:8e:35:37:db:dd:b8:fe:
 fa:6d:d9:be:57:f3:ca:f3:56:aa:be:c8:57:a1:a8:
 c9:83:dd:5a:96:5a:6b:32:2d:5e:ae:da:fc:85:76:
 bb:77:d5:c2:53:f3:5b:61:74:e7:f3:3e:4e:ad:10:
 7d:4f:ff:90:69:7c:1c:41:2f:67:e4:13:5b:e6:3a:
 a3:2f:93:61:3b:07:56:59:5a:d9:bc:34:4d:b3:54:
 b5:c6:e5:0a:88:e9:62:7b:4b:85:d2:9e:4c:ee:0b:
 0d:f4:72:b1:1b:44:04:93:cf:cc:bb:18:31:3a:d4:
 83:4a:ff:15:42:2d:91:ca:d0:cb:36:d9:8d:62:c0:
 41:59:1a:93:c7:27:79:08:94:b2:a2:50:3c:57:27:
 33:af:f0:b6:92:44:49:c5:09:15:a7:43:2a:0f:a9:
 02:61:b3:66:4f:c3:de:d3:63:1e:08:b1:23:ea:69:
 90:db:e8:e9:1e:21:84:e0:56:e1:8e:a1:fa:3f:7a:
 08:0f:54:0a:82:41:08:6b:6e:bb:cf:d6:5b:80:c6:
 ea:0c:80:92:96:ab:95:5d:38:6d:4d:da:38:6b:42:
 ef:7c:88:58:83:88:6d:da:28:62:62:1f:e5:a7:0d:
 04:9f:0d:d9:52:39:46:ba:56:7c:1d:77:38:26:7c:
 86:69:58:4d:b0:47:3a:e2:be:ee:1a:fc:4c:de:67:

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 24

 f3:d5:fe:e6:27:a2:ef:26:86:19:5b:05:85:9c:4c:
 02:24:76:58:42:1a:f8:e0:e0:ed:78:f2:8f:c8:5a:
 20:a9:2d:0b:d4:01:fa:57:d4:6f:1c:0a:31:30:8c:
 32:7f:b0:01:1e:fe:94:96:03:ee:01:d7:f4:4a:83:
 f5:06:fa:60:43:15:05:9a:ca:88:59:5c:f5:13:09:
 82:69:7f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92
 X509v3 Authority Key Identifier:
 keyid:3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 28:24:86:91:a6:4a:88:e4:8d:6b:fc:67:2a:68:08:67:35:e5:
 a6:77:ff:07:4b:89:53:99:2e:6d:95:df:12:81:28:6a:8e:6f:
 5a:98:95:5b:4a:21:ae:f0:20:a4:4e:06:b2:4e:5a:67:c1:6a:
 06:f1:0f:c1:f7:7e:f2:e0:b3:9d:d8:54:26:6a:b2:1c:19:b8:
 b5:5c:c7:03:6b:f7:70:9e:72:85:c9:29:55:f9:f4:a4:f2:b4:
 3b:3d:ce:25:96:67:32:1e:8d:e2:00:22:55:4b:05:4f:ee:0e:
 67:ac:db:1b:61:da:5f:9c:10:1c:0c:05:66:c0:5b:5f:b9:95:
 59:a9:58:5b:e7:69:ac:b0:bd:b3:c2:a3:35:58:01:a4:ff:c0:
 8d:ac:1c:19:21:41:50:fb:8e:e0:f5:a9:ad:ec:de:cb:53:04:
 a9:d8:ac:76:8a:09:0d:7c:c6:1a:bc:06:74:bb:10:1c:aa:07:
 f6:cb:b2:1b:0c:0c:65:03:45:2b:51:d5:6e:a0:4d:91:ce:c5:
 ed:8d:a9:e7:f6:37:7d:ab:1b:a4:a2:a3:3b:76:17:5b:d9:3a:
 9c:c1:df:cc:cd:a0:b0:a9:5c:74:61:d7:a0:1d:04:67:68:ee:
 a6:7b:1e:41:a4:02:fc:65:9e:e3:c1:c2:57:b2:2e:b0:ff:a9:
 86:82:35:4d:29:b2:fe:74:2e:b8:37:5d:2b:e8:69:f2:80:29:
 19:f1:1e:7a:5d:e3:d2:51:50:46:30:54:7e:b8:ad:59:61:24:
 45:a8:5a:fe:19:ff:09:31:d0:50:8b:e2:15:c0:a2:f1:20:95:
 63:55:18:a7:a2:ad:16:25:c7:a3:d1:f2:e5:be:6d:c0:50:4b:
 15:ac:e0:10:5e:f3:7b:90:9c:75:1a:6b:e3:fb:39:88:e4:e6:
 9f:4c:85:60:67:e8:7d:2e:85:3d:87:ed:06:1d:13:0b:76:d7:

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 25

 97:a5:b8:05:76:67:d6:41:06:c5:c0:7a:bd:f4:c6:5b:b2:fd:
 23:6f:1f:57:2e:df:95:3f:26:a5:13:4d:6d:96:12:56:98:db:
 2e:7d:fd:56:f5:71:b7:19:2b:c9:de:2d:b9:c8:17:cc:20:de:
 7c:19:7a:aa:12:97:1c:80:b7:d3:67:d3:b7:a7:96:f0:c9:4d:
 f5:8b:0e:10:3b:b9:4e:09:90:5a:3b:51:c9:48:a2:ca:9f:db:
 72:44:87:59:db:49:fa:75:44:b5:f6:7f:c5:26:e1:01:ae:7b:
 6f:4a:75:d1:b5:b3:68:c0:31:48:f8:5c:06:c0:f1:b4:96:e8:
 38:e8:ad:44:3d:0a:8c:03:b6:2c:86:6a:f0:39:de:84:4b:2e:
 91:18:d1:45:65:d8:64:f5

Create a ConfigMap in the Kubernetes Cluster

After downloading the certificate locally on your machine, create a ConfigMap in the
Kubernetes cluster that will copy the root CA certificate on your local machine into
the Kubernetes cluster.

To create a ConfigMap, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
 --from-file=./certs/root.democa.illumio-demo.com.crt

The --from-file option points to the path where the root CA certificate is stored on
your local machine.

To verify that ConfigMap was created correctly, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
 > --from-file=./certs/root.democa.illumio-demo.com.crt
 configmap/root-ca-config created
 $
 $ kubectl -n illumio-system get configmap
 NAME DATA AGE
 root-ca-config 1 12s
 $
 $ kubectl -n illumio-system describe configmap root-ca-config
 Name: root-ca-config
 Namespace: illumio-system
 Labels: <none>
 Annotations: <none>

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 26

 Data
 ====
 root.democa.illumio-demo.com.crt:

 -----BEGIN CERTIFICATE-----
 MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
 ---output suppressed---
 wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
 -----END CERTIFICATE-----

 Events: <none>
 $

root-ca-config is the name used to designate the ConfigMap. You can modify it accord-
ing to your naming convention.

Configure Calico in Append Mode
In case your cluster is configured with Calico as the network plugin (usually for Kuber-
netes and not for OpenShift), both Calico and Illumio Core will write iptables rules on
the cluster nodes.

 l Calico - Needs to write iptables rules to instruct the host how to forward packets
(overlay, IPIP, NAT, and so on).

 l Illumio Core - Needs to write iptables rules to secure communications between
nodes and/or Pods.

You should establish a hierarchy to make the firewall coexistence work smoothly
because Illumio Core and Calico will write rules at the same time. By default, both solu-
tions are configured to insert rules first in the iptables chains/tables and Illumio Core
will remove other rules added by a third-party software (in the Exclusive mode).

To allow Calico to write rules along with Illumio without flushing rules from one
another, you should:

 l Configure Illumio to work in Firewall Coexistence mode (default for workloads
that are part of a container cluster).

 l Configure Calico to work in Append mode (default is Insert mode).

To configure Calico to work in Append mode with iptables:

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Create a Container Cluster in the PCE

Illumio Core for Kubernetes and OpenShift 5.1 27

 1. Edit the Calico DaemonSet:

kubectl -n kube-system edit ds calico-node

 2. Locate the spec: > template: > spec: > containers: section inside the YAML file and
change ChainInsertMode by adding the following code block:

- name: FELIX_CHAININSERTMODE

 value: Append

 3. Save your changes and exit.

 4. Kubernetes will restart all Calico Pods in a rolling update.

For more information on changing Calico ChainInsertMode, see Calico documentation.

Create a Container Cluster in the PCE
To provide visibility and enforcement to your containerized environment, you first
need to create a container cluster in the PCE. Each container cluster maps to an exist-
ing Kubernetes or OpenShift cluster.

Create a Container Cluster
To create a new container cluster:

 1. Log into the PCE web console as a user with Global Organization Owner priv-
ileges.

 2. From the PCE web console menu, navigate to Infrastructure > Container
Clusters.

 3. Click Add.

 a. Add a Name.

 b. Save the Container Cluster.

 4. You will see a summary page of the new Container Cluster. From the Cluster Pair-
ing Token section, copy the values of the Cluster ID and Cluster Token.

 5. After copying and saving the values (in a text editor or similar tool), open the
Container Workload Profiles page.

https://docs.projectcalico.org/reference/felix/configuration

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Create a Container Cluster in the PCE

Illumio Core for Kubernetes and OpenShift 5.1 28

Configure a Container Workload Profile Template
When configuring a new Container Cluster, it is recommended to set the default set-
tings shared by all the Container Workload Profiles. Illumio provides a Container Work-
load Profile template that can be used for that purpose. By defining the default Policy
State and minimum set of labels common to all namespaces in the cluster, you will
save time later on when new namespaces are discovered by Kubelink. Each new pro-
file created will inherit what was defined in the template.

IMPORTANT:
Illumio does not provide a method to redefine at once all the labels asso-
ciated with each profile. Hence, it is strongly recommended to use the
provided template to define the default values for all profiles that are part
of the same cluster.

To define the default parameters for all profiles using a template, under Container
Workload Profiles, click Edit default settings and select values for all the fields.

For information about assigning default labels in the template, see Labels Restrictions
for Kubernetes Namespaces.

After you click OK, the following information is displayed:

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Create a Pairing Profile for Your Cluster Nodes

Illumio Core for Kubernetes and OpenShift 5.1 29

Create a Pairing Profile for Your Cluster Nodes

IMPORTANT:
Before deploying the C-VEN, ensure that either of the following two require-
ments has been met:

 l Kubelink is deployed on the Kubernetes cluster and is in sync with the
PCE, or

 l Firewall coexistence is enabled.

Before deploying, you should create a pairing profile to pair the cluster nodes with the
PCE. You only need to create one pairing profile for all your nodes.

NOTE:
You only need to create pairing profiles for Kubernetes or OpenShift nodes
and not for container workloads.

For ease of configuration and management, consider applying the same Application,
Environment, and Location labels across all nodes of the same Kubernetes or
OpenShift cluster. The screenshot below shows an example of a pairing profile for a
Kubernetes cluster.

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Map Kubernetes Node Labels to Illumio Labels

Illumio Core for Kubernetes and OpenShift 5.1 30

TIP:
Illumio recommends all pairing profiles for Kubernetes nodes to not use
Enforced policy state. Use Build or Test mode for initial configuration.

You should only move them into enforced state after you have completed
all other configuration steps in this guide.

Map Kubernetes Node Labels to Illumio Labels
Label mapping is a method of mapping some or all existing Kubernetes node labels to
Illumio labels. Label maps are a new way to assign Illumio labels to container host
workloads in addition to existing methods (such as with container workload profiles
and pairing profiles). Labels assigned through label maps take precedence over these
other methods -- that is, they overwrite any labels assigned with these other methods.

A label map is defined by a Kubernetes Custom Resource Definition (CRD) within a
yaml file that is typically installed via a Helm Chart. Installing the Helm Chart then
applies the defined labels.

Label Mapping CRD
The CRD is defined in the yaml file with a kind: LabelMap declaration, which in turn con-
tains a nodeLabelMap section that applies to nodes (host workloads).

Within the nodeLabelMap section, Illumio label types are mapped with fromKey and toKey
key-value pairs, where the fromKey value specifies a source Kubernetes label, and the
toKey value paired with it defines the destination Illumio label type.

If an optional allowCreate: true is within a fromKey and toKey pair, the Illumio label type
defined in that mapping is created if it does not already exist on the PCE.

An optional valuesMap: within a fromKey and toKey pair specifies one or more label value
mappings for that label type, with from: value identifying the source Kubernetes label
and the to: value following it specifying the destination Illumio label value. If no val-
uesMap: is specified, then label values for the mapped label type are not changed. Only
the label type is changed in the PCE.

Example Label Map
Note these points about the following example label map:

 l The first nodeLabelMap item creates a new Illumio location label of Amazon (if it does
not exist, per the allowCreate: true declaration) and maps this label to all nodes

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Deploy with Helm Chart

Illumio Core for Kubernetes and OpenShift 5.1 31

with the Kubernetes label topology.kubernetes.io/region with either value of eu-
west-1 or eu-west-2.

 l With the second item under nodeLabelMap, for every node-type Kubernetes label,
the map creates Illumio k8s-node labels with values based on the existing Kuber-
netes label values (because there is no associated valuesMap mapping definition).

kind: LabelMap
 apiVersion: ic4k.illumio.com/v1alpha1
 metadata:
 name: default
 nodeLabelMap:
 - allowCreate: true
 fromKey: topology.kubernetes.io/region
 toKey: loc
 valuesMap:
 - from: eu-west-1
 to: Amazon
 - from: eu-west-2
 to: Amazon
 - allowCreate: true
 fromKey: node-type
 toKey: k8s-node

The label type has to be created and exist in PCE first before new labels can be cre-
ated through label mapping.

Deploy with Helm Chart
To deploy via Helm Chart:

 1. Install Helm. Refer to https://helm.sh/docs/ for a quick start guide and other rel-
evant information.

According to official Helm documentation, if your version of Helm is lower than
3.8.0, the following command must be executed in the installation environment:

$ export HELM_EXPERIMENTAL_OCI=1

 2. Prepare an illumio-values.yaml file with the following mandatory parameters
set with values that describe this deployment:

https://helm.sh/docs/

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Deploy with Helm Chart

Illumio Core for Kubernetes and OpenShift 5.1 32

pce_url: URL_PORT # PCE URL with port, e.g. mypce.example.com:8443
 cluster_id: ILO_CLUSTER_UUID # Cluster ID from PCE, e.g. cc4997c1-
40...
 cluster_token: ILO_CLUSTER_TOKEN # Cluster Token from PCE, e.g. 1_
170b...
 cluster_code: ILO_CODE # Pairing Profile key from PCE, e.g. 1391c...
 containerRuntime: containerd # Container runtime engine used in
cluster, allowed values are [containerd, crio, k3s_containerd]
 containerManager: kubernetes # Container manager used in cluster,
allowed values are [kubernetes, openshift]

If you are using a private PKI, you need to add these additional lines to your illu-
mio_values.yaml:

extraVolumeMounts:
 - name: root-ca
 mountPath: /etc/pki/tls/ilo_certs/
 readOnly: false
 extraVolumes:
 - name: root-ca
 configMap:
 name: root-ca-config
 ignore_cert: true

You may also want to include selected optional parameters when installing, for
example, with clusterMode: clas to deploy with a CLAS-enhanced Kubelink com-
ponent. For more information, see Important Optional Parameters.

 1.
IMPORTANT:
If you want to deploy with CLAS enabled, you must explicitly set the
clusterMode Helm Chart parameter. The default is to deploy in legacy
(non-CLAS) mode

 2. Optionally map existing Kubernetes labels to desired Illumio labels by adding a
Kubernetes Custom Resource Definition (CRD) label map to your illumio-val-
ues.yaml file. For details on using a label map, see the "Map Kubernetes Node
Labels to Illumio Labels" topic.

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Deploy with Helm Chart

Illumio Core for Kubernetes and OpenShift 5.1 33

 3. Install the Helm Chart:

$ helm install illumio -f illumio-values.yaml
oci://quay.io/illumio/illumio --version <ver#> --namespace illumio-
system --create-namespace

IMPORTANT:
Be sure to explicitly specify the version to install with the --version
<ver#> option (for example, --version 5.1.0), after confirming that the
product version you want to install is supported with your
PCE version. Verify which PCE versions support the Illumio Core for
Kubernetes version you want to deploy at the Kubernetes Operator
OS Support and Dependencies page on the Illumio Support Portal.

In case the illumio-system namespace already exists, omit the --create-
namespace flag.

NOTE:
Kubelink version labeling has changed. Prior to version 3.3.0, Kubelink used
a 6-hexit suffix for its release version, like 3.2.1.445a83. In Kubelink 3.3.0
and later, the version suffix is now changed to a numeric build number, like
3.3.0-56.

Important Optional Parameters
Refer to the README file included with the Helm Chart for important deployment
information, including additional parameters you can specify in the Helm Chart before
installing it.

The following list describes a few important optional parameters to consider using in
your illumio-values.yaml file.

Flat Networks: networkType

To add support for flat network CNIs in addition to the default (where pods run on an
overlay network), an optional networkType parameter is now available in the Helm
Chart where you can specify flat or overlay type. The default value is overlay.

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Deploy with Helm Chart

Illumio Core for Kubernetes and OpenShift 5.1 34

CLAS Mode: clusterMode

Starting in Illumio Core for Kubernetes versions 5.0.0 and later, a Cluster Local Actor
Store (CLAS) mode is introduced into the Kubelink architecture. Use the optional
clusterMode parameter to configure Kubelink when first installing a new cluster, or
when migrating an existing cluster.

When installing, set clusterMode to clas or legacy in your illumio-values.yaml file to
turn on (or leave off) CLAS mode in the cluster, respectively. The default setting for
clusterMode is legacy (non-CLAS). To enable CLAS in a new cluster, you must explicitly
include clusterMode:clas in the illumio-values.yaml file when installing.

When upgrading an existing non-CLAS cluster to CLAS, set clusterMode to
migrateLegacyToClas. When reverting (or downgrading) CLAS to non-CLAS, set cluster-
Mode to migrateClasToLegacy. For more information about upgrading to a CLAS-enabled
cluster, see the topic Upgrade to CLAS Architecture.

IMPORTANT:
To properly upgrade to CLAS, you must follow the procedure described in
Upgrade to CLAS Architecture.

Illumio recommends enabling (or migrating to) CLAS-enabled clusters to take advant-
age of this architecture's benefits. For more information about CLAS, see the "Cluster
Local Actor Store (CLAS)" section in the Architecture topic.

CLAS Degraded Mode: disableDegradedMode and degradedModePoli-

cyFail

If the connection between Kubelink and the PCE becomes unavailable, a CLAS-
enabled Kubelink can still serve policies to C-VEN (and therefore to its Kubernetes
Workloads and pods). When a PCE interruption is detected, a CLAS-enabled Kubelink
enters a degraded mode.

By default, degraded mode is enabled in CLAS clusters. You can disable degraded
mode by explicitly setting the parameter/value pair disableDegradedMode: true in illu-
mio-values.yaml, and performing a helm upgrade.

In degraded mode, new Pods of existing Kubernetes Workloads get the latest policy
version cached in CLAS storage. When Kubelink detects a new Kubernetes Workload
labeled the same way and in the same namespace as an existing Kubernetes Work-
load, Kubelink delivers the existing, cached policy to Pods of this new Workload.

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Deploy with Helm Chart

Illumio Core for Kubernetes and OpenShift 5.1 35

If Kubelink cannot find a cached policy (that is, when labels of a new Workload do not
match the labels of any existing Workload in the same namespace), Kubelink delivers
a "fail open" or "fail closed" policy based on the Helm Chart parameter
degradedModePolicyFail setting, as specified in the illumio-values.yaml file when
installing (or upgrading).

The default parameter value of degradedModePolicyFail is open, which opens the firewall
of new Pods. The closed value means the firewall of new Pods is programmed to block
all network connectivity.

The precise behavior of closed depends on the Cluster Workload Profile's Enforce-
ment setting: all connectivity is blocked only if the Enforcement of the namespace is
set to Full.

By default, degraded mode is enabled in CLAS clusters. You can disable degraded
mode by explicitly setting the parameter/value pair disableDegradedMode: true in illu-
mio-values.yaml, and performing a helm upgrade.

When degraded mode is disabled, Kubelink/CLAS does not deliver policy based on
matching labels. Kubelink continues to run, and delivers the cached policy to existing
Kubernetes Workloads, but does not deliver policy to new Workloads. Kubelink con-
tinues to attempt re-establishing communication with the PCE.

After the PCE becomes available again, it restarts, synchronizes policy and labels, and
then continues normal operation.

NOTE:
If the PCE becomes inaccessible due to database restoration or main-
tenance, and Kubelink has disabled degraded mode, you are advised to
restart Kubelink by deleting its Pod to synchronize the current state.

CLAS etcd Internal Storage Size: sizeGi

Kubelink in CLAS mode uses etcd as a local cache for policy and runtime data. The
Helm Chart parameter storage.sizeGi sets the size in GB of this ephemeral storage. Set
the parameter under storage in the illumio-values.yaml for a cluster, as shown in
the following example:

storage:
 registry: "docker.io/bitnami"
 repo: "etcd"
 imageTag: "3.5.7"

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Re-Label Your Cluster Nodes

Illumio Core for Kubernetes and OpenShift 5.1 36

 imagePullPolicy: "IfNotPresent"
 sizeGi: 1

The default value is 1, for 1 GB, which should be enough for a cluster with under 1000
Kubernetes workloads. If a cluster is bigger and you increase memory limits for C-VEN
and Kubelink, then increase the etcd internal storage size with this parameter.

Re-Label Your Cluster Nodes

NOTE:
Re-labeling the cluster nodes is optional.

In the case of self-managed deployments in which both Master and Worker nodes are
managed, you may want to re-label your nodes to differentiate Master nodes from
Worker nodes. Doing this helps when you are writing different policies for the Worker
and Master nodes, or if you want to segment these nodes differently.

To re-label your cluster nodes:

 1. In the PCE UI, go to Infrastructure > Container Clusters > YourClusterName >
Workloads.

 2. Select the workloads you want to re-label.

 3. Click Edit Labels to assign the new labels (for example, Master and Worker).

 4. After re-labeling your cluster nodes, the nodes part of the cluster reflect the
updated label(s).

Generating YAML Manifests for Manual Deployment
In addition to the typical deployment with a Helm Chart, alternatively you can manu-
ally deploy Illumio Core for Kubernetes and OpenShift using customized
YAML manifests that you have changed to suit your specific needs.

The procedure consists of the following steps, which are described in the following
sections:

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Generating YAML Manifests for Manual Deployment

Illumio Core for Kubernetes and OpenShift 5.1 37

 1. Install Helm tool.

 2. Generate files.

 3. Remove unpair DaemonSet and Job commands.

Install Helm Tool
There are several options for installing the Helm tool, depending on the operating sys-
tem you are running. For complete details on all options, see https://helm.sh/-
docs/intro/install/. A few common installation commands are shown below:

brew install helm

sudo snap install helm --classic

export HELM_LATEST=$(curl -s
https://api.github.com/repos/helm/helm/releases/latest | grep tag_name |
cut -d '"' -f 4)
 curl -LJO https://get.helm.sh/helm-$HELM_LATEST-linux-amd64.tar.gz
tar -zxvf helm-$HELM_LATEST-linux-amd64.tar.gz
mv linux-amd64/helm /usr/local/bin/helm

Generate Files
Prepare values.yaml in advance. The file must set at least the following minimally
required parameters:

pce_url: URL_PORT
cluster_id: ILO_CLUSTER_UUID
cluster_token: ILO_CLUSTER_TOKEN
cluster_code: ILO_CODE
containerRuntime: RUNTIME # supported values: [containerd (default),
docker, crio, k3s_containerd]
containerManager: MANAGER # supported values: [kubernetes, openshift]
 networkType: flat # CNI type, allowed values are [overlay, flat]
 clusterMode: clas #

Generate templates and redirect output into a file, for example, into illumio.yaml:

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
Generating YAML Manifests for Manual Deployment

Illumio Core for Kubernetes and OpenShift 5.1 38

helm template oci://quay.io/illumio/illumio -f values.yaml --version
<ver#> > illumio.yaml

IMPORTANT:
Be sure to explicitly specify the version you want to install with the --ver-
sion <ver#> option (for example, --version 5.1.0), after confirming that the
product version you want to install is supported with your PCE version.
Verify which PCE versions support the Illumio Core for Kubernetes version
you want to deploy at the Kubernetes Operator OS Support and Depend-
encies page on the Illumio Support Portal.

Remove Unpair DaemonSet and Job Objects
In the generated YAML file illumio.yaml, search for and remove the DaemonSet and
Job objects. Remove only these two objects; they are only used for the removal of Illu-
mio product:

. . .
kind: Job
metadata:
name: illumio-ven-unpair-job
...
kind: DaemonSet
metadata:
name: illumio-ven-unpair
...

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Host and Cluster Requirements

Illumio Core for Kubernetes and OpenShift 5.1 39

Deployment for C-VEN Versions 21.5.15 or
Earlier

This chapter contains the following topics:

Host and Cluster Requirements 39

Prepare Your Environment 41

Create a Container Cluster in the PCE 51

Deploy Kubelink in Your Cluster 53

Deploy C-VENs in Your Cluster 59

Re-Label Your Cluster Nodes 67

After you set up your clusters, make sure you perform the steps in the order provided
in this section.

NOTE:
Follow these instructions if you are deploying Illumio Core for Kubernetes
(C-VEN) versions 21.5.15 or earlier.

If you are deploying the Illumio Core for Kubernetes 3.0.0 release (or later),
do not follow these instructions, but instead refer to Deployment with Helm
Chart (Core for Kubernetes 3.0.0 and Later), which describes how to use a
Helm Chart to deploy all necessary product components.

The installation process is mostly the same for Kubernetes and OpenShift,
except a few steps differ. A dedicated section is created for Kubernetes or
OpenShift wherever required.

Host and Cluster Requirements
To deploy Illumio containers into your environment, you must meet the following
requirements.

Supported Configurations for On-premises and IaaS
For full details on all supported configurations for Containerized VEN release 21.5.15
and earlier, see the C-VEN/Kubelink OS Support and Dependencies page on the Illu-
mio Support Portal (under Software > OS Support).

https://support.illumio.com/shared/software/os-support-package-dependencies/cven_kubelink.html

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Host and Cluster Requirements

Illumio Core for Kubernetes and OpenShift 5.1 40

Privileges
The privileges listed below should be provided on host-level and cluster-level for the
respective components.

Host-Level

C-VEN

C-VEN requires the following privileges on the host:

 l C-VEN is a privileged container and requires access to the following system
calls:

 o NET_ADMIN

 o SYS_MODULE

 o SYS_ADMIN

 l C-VEN requires persistent storage on the host to write iptables rules and logs.

 l C-VEN mounts volumes on the local host to be able to operate (mount points
may differ depending on the orchestration platform).

Optionally, you can set the Priority Class to system-node-critical. This option is only
supported in Kubernetes 1.17 and later, in a namespace other than kube-system. For
more details, see Kubernetes Documentation.

Kubelink

Kubelink does not require specific privileges on the host because Kubelink:

 l Is not a privileged container.

 l Is a stateless container.

 l Does not require persistent storage.

Cluster-Level

Namespace

C-VENs and Kubelink are deployed in the illumio-system namespace. You can modify
this namespace name according to your deployment (manifest file modification).

https://v1-17.docs.kubernetes.io/docs/setup/release/notes/#scheduling-1

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 41

C-VEN

C-VEN requires the following privileges on the cluster:

 l C-VEN uses the illumio-ven ServiceAccount.

Kubelink

Kubelink requires the following privileges on the cluster:

 l Kubelink creates a new Cluster Role to list and watch events occurring on the
Kubernetes API server for the following elements:

 o nodes

 o hostsubnets

 o replicationcontrollers

 o services

 o replicasets

 o daemonsets

 o namespaces

 o statefulsets

 l Kubelink uses the illumio-kubelink ServiceAccount.

Optionally, you can set the Priority Class to system-cluster-critical. This option is only
supported in Kubernetes 1.17 and later, in a namespace other than kube-system. For
more details, see Kubernetes Documentation.

Prepare Your Environment

IMPORTANT:
The following steps for preparing your environment are no longer needed
when deploying Illumio Core for Kubernetes version 3.0.0 and beyond,
which now uses Helm Chart for deploying C-VEN and Kubelink. This section
is included here for backwards compatibility and historical purposes. If you
are deploying using Helm Chart, skip this section and now follow the instruc-
tions in Create a Container Cluster in the PCE.

You need to do these steps before C-VEN installation and pairing.

https://v1-17.docs.kubernetes.io/docs/setup/release/notes/#scheduling-1

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 42

CAUTION:
If the prerequisite steps are not done before C-VEN and Kubelink install-
ation, then containerized environments and Kubelink can get disrupted.

Unique Machine ID
Some of the functionality and services provided by the Illumio C-VEN and Kubelink
depend on the Linux machine-id of each Kubernetes cluster node. Each machine-id
must be unique in order to take advantage of the functionality. By default, the Linux
operating system generates a random machine-id to give each Linux host uniqueness.
However, there are cases when machine-id's can be duplicated across machines. This
is common across deployments that clone machines from a golden image, for
example, spinning up virtual machines from VMware templates, creating compute
instances from a reference image, or from a template from a Public Cloud provider.

IMPORTANT:
Illumio Core requires a unique machine-id on all nodes. This issue is more
likely to occur with on-premises or IaaS deployments, rather than with Man-
aged Kubernetes Services (from Cloud Service Providers). For more inform-
ation on how to create a new unique machine-id, see Troubleshooting.

Create Labels
For details on creating labels, see "Labels and Label Groups" in Security Policy Guide.
The labels shown below are used in examples throughout this document. You are not
required to use the same labels

Name Label Type

Kubernetes Cluster Application

OpenShift Cluster Application

Production Environment

Development Environment

Data Center Location

Cloud Location

Kubelink Role

Node Role

Control Plane Node (formerly Master) Role

Worker Role

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 43

Push Kubelink and C-VEN Images to Your Container Registry
In order to install Illumio Core for containers, you first need to upload (or push)
Kubelink and C-VEN container images to your container registry. The files in the C-
VEN and Kubelink packages you've downloaded are as follows:

C-VEN illumio-ven-xx.x.x-xxxx.k8s.x86_64.tgz package includes:

 l A Docker image
 o illumio-ven-xx.x.x-xxxx.tgz

 l Configuration files:
 o illumio-ven-secret.yml

 o illumio-ven-kubernetes.yml
 o illumio-ven-openshift.yml

Kubelink illumio-kubelink-x.x.x.tar.gz package includes:

 l A docker image
 o kubelink-image.tar.gz

 l Configuration files in kube-yaml
 o illumio-kubelink-secret.yml

 o illumio-kubelink-kubernetes.yml

 o illumio-kubelink-openshift.yml

 o illumio-kubelink-namespace.yml

CAUTION:
These images are not publicly available and should not be posted on a pub-
licly open container registry without Illumio's consent.

In a self-managed deployment, Kubelink and C-VEN images can be pushed to a
private container registry. In OpenShift, a container registry is provided as part of the
platform, and images can be pushed to this registry for simplicity and better authen-
tication. In the case of Kubernetes, there is no container registry provided by default
and must be provided as an external component.

In a cloud-managed deployment, Cloud Service Providers (CSPs) provide integration
of private container registries such as, Amazon ECR, Microsoft ACR, and so on. These
registries can securely be used to host Illumio's container images for Kubelink and C-
VEN. Refer to the documentation provided by the respective CSPs to learn how to
push images to those registries.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 44

To push Kubelink and C-VEN container images to your private container registry, use
the following commands (based on docker):

 1. Log in to your private container registry.

docker login <docker-registry>

 2. Load Kubelink and C-VEN container images on your local computer.

docker load -i kubelink-image.tar.gz

 docker load -i illumio-ven-21.5.x-xxxx.tgz

Verify that docker images are loaded on your computer.

docker image ls

 3. Tag the Kubelink and C-VEN container image IDs with the name of your con-
tainer registry.

docker tag <illumio-kubelink-image-id> <docker-registry>/illumio-
kubelink:2.1.x.xxxxxx

 docker tag <illumio-ven-image-id> <docker-registry>/illumio-ven:21.5.x-xxxx

Verify that images are tagged on your computer and ready to be pushed to your
private container registry.

docker image ls

 4. Push Kubelink and C-VEN container images on your private container registry.

docker push <docker-registry>/illumio-kubelink:2.1.x.xxxxxx
 docker push <docker-registry>/illumio-ven:21.5.x-xxxx

After pushing images to your private container registry, proceed to the next section.

Create Illumio Namespace
Illumio Core for containers is deployed in a dedicated namespace illumio-system, by
default. This namespace has the minimum privileges in the cluster required to run Illu-
mio Core and can tie into the Kubernetes and OpenShift RBAC models.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 45

To create the illumio-system namespace for Kubernetes, use the following command:

kubectl create namespace illumio-system

NOTE:
Illumio provides a yaml manifest file to create the namespace in the
Kubelink tarball illumio-kubelink-namespace.yml. You can create this
namespace by applying this manifest file to your Kubernetes cluster, using
the following command:

kubectl apply -f illumio-kubelink-namespace.yml

To create the illumio-system project for OpenShift, use the following command:

oc new-project illumio-system

Authenticate Kubernetes Cluster with Container Registry

NOTE:
Depending on your deployment, the steps in the Authenticate Kubernetes
Cluster with Container Registry, Create a ConfigMap to Store Your Root CA
Certificate, and Configure Calico in Append Mode topics are optional.

When storing container images in a private container registry, it is often required and
strongly recommended to authenticate against the registry to be able to pull an image
from it. In order to do this, the Kubernetes or OpenShift cluster must have the cre-
dentials configured and stored in a secret file to be able to pull container images.

To configure a secret to store your container registry credentials, use the following
command:

kubectl create secret docker-registry <container-registry-secret-name> -n illumio-
system --docker-server=<container-registry> --docker-username=<username> --docker-
password=<password>

To verify that the secret has been created, use the following command:

kubectl get secret -n illumio-system | grep <container-registry-secret-name>

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 46

IMPORTANT:
The above commands are valid for deployments with your own private con-
tainer registry, but may not be valid for a cloud-managed private container
registry. For more information, refer to your Cloud Service Provider doc-
umentation.

Create a ConfigMap to Store Your Root CA Certificate
This section describes how to implement Kubelink with a PCE using a certificate
signed by a private PKI. It describes how to configure Kubelink and C-VEN to accept
the certificate from the PCE signed by a private root or intermediate Certificate
Authority (CA) and ensure that Kubelink can communicate in a secure way with the
PCE.

Prerequisites

 l Access to the root CA to download the root CA certificate

 l Access to your Kubernetes cluster and can run kubectl commands

 l Correct privileges in your Kubernetes cluster to create resources like a Con-
figMaps, secrets, and Pods

 l Access to the PCE web console as a Global Organization Owner

Download the Root CA Certificate

Before you begin, ensure that you have access to the root CA certificate. The root CA
certificate is a file that can be exported from the root CA without compromising the
security of the company. It is usually made available to external entities to ensure a
proper SSL handshake between a server and its clients.

You can download the root CA certificate in the CRT format on your local machine.
Below is an example of a root CA certificate:

$ cat root.democa.illumio-demo.com.crt
 -----BEGIN CERTIFICATE-----
 MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
 ---output suppressed---
 wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
 -----END CERTIFICATE-----

You can also get the content of your root CA certificate in a readable output format
by using the following command:

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 47

$ openssl x509 -text -noout -in ./root.democa.illumio-demo.com.crt
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 fc:34:35:f3:c0:8a:f2:56:e1:89:8a:67:8f:7d:78:76:47:dd:2f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Validity
 Not Before: Jan 20 00:05:36 2020 GMT
 Not After : Jan 17 00:05:36 2030 GMT
 Subject: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:
 00:c0:e5:48:7d:97:f8:5b:8c:ef:ac:16:a8:8c:aa:
 68:b8:48:af:28:cd:17:8f:02:c8:82:e9:69:62:e2:
 89:2b:be:bd:34:fc:e3:4d:3f:86:5e:d7:e6:89:34:
 71:60:e6:54:61:ac:0f:26:1c:99:6f:80:89:3f:36:
 b3:ad:78:d1:6c:3f:d7:23:1e:ea:51:14:48:74:c3:
 e8:6e:a2:79:b1:60:4c:65:14:2a:f1:a0:97:6c:97:
 50:43:67:07:b7:51:5d:2c:12:49:81:dc:01:c9:d1:
 57:48:32:2e:87:a8:d2:c0:b9:f8:43:b2:58:10:af:
 54:59:09:05:cb:3e:f0:d7:ef:70:cc:fc:53:48:ee:
 a4:a4:61:f1:d7:5b:7c:a9:a8:92:dc:77:74:f4:4a:
 c0:4a:90:71:0f:6d:9e:e7:4f:11:ab:a5:3d:cd:4b:
 8b:79:fe:82:1b:16:27:94:8e:35:37:db:dd:b8:fe:
 fa:6d:d9:be:57:f3:ca:f3:56:aa:be:c8:57:a1:a8:
 c9:83:dd:5a:96:5a:6b:32:2d:5e:ae:da:fc:85:76:
 bb:77:d5:c2:53:f3:5b:61:74:e7:f3:3e:4e:ad:10:
 7d:4f:ff:90:69:7c:1c:41:2f:67:e4:13:5b:e6:3a:
 a3:2f:93:61:3b:07:56:59:5a:d9:bc:34:4d:b3:54:
 b5:c6:e5:0a:88:e9:62:7b:4b:85:d2:9e:4c:ee:0b:
 0d:f4:72:b1:1b:44:04:93:cf:cc:bb:18:31:3a:d4:
 83:4a:ff:15:42:2d:91:ca:d0:cb:36:d9:8d:62:c0:

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 48

 41:59:1a:93:c7:27:79:08:94:b2:a2:50:3c:57:27:
 33:af:f0:b6:92:44:49:c5:09:15:a7:43:2a:0f:a9:
 02:61:b3:66:4f:c3:de:d3:63:1e:08:b1:23:ea:69:
 90:db:e8:e9:1e:21:84:e0:56:e1:8e:a1:fa:3f:7a:
 08:0f:54:0a:82:41:08:6b:6e:bb:cf:d6:5b:80:c6:
 ea:0c:80:92:96:ab:95:5d:38:6d:4d:da:38:6b:42:
 ef:7c:88:58:83:88:6d:da:28:62:62:1f:e5:a7:0d:
 04:9f:0d:d9:52:39:46:ba:56:7c:1d:77:38:26:7c:
 86:69:58:4d:b0:47:3a:e2:be:ee:1a:fc:4c:de:67:
 f3:d5:fe:e6:27:a2:ef:26:86:19:5b:05:85:9c:4c:
 02:24:76:58:42:1a:f8:e0:e0:ed:78:f2:8f:c8:5a:
 20:a9:2d:0b:d4:01:fa:57:d4:6f:1c:0a:31:30:8c:
 32:7f:b0:01:1e:fe:94:96:03:ee:01:d7:f4:4a:83:
 f5:06:fa:60:43:15:05:9a:ca:88:59:5c:f5:13:09:
 82:69:7f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92
 X509v3 Authority Key Identifier:
 keyid:3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 28:24:86:91:a6:4a:88:e4:8d:6b:fc:67:2a:68:08:67:35:e5:
 a6:77:ff:07:4b:89:53:99:2e:6d:95:df:12:81:28:6a:8e:6f:
 5a:98:95:5b:4a:21:ae:f0:20:a4:4e:06:b2:4e:5a:67:c1:6a:
 06:f1:0f:c1:f7:7e:f2:e0:b3:9d:d8:54:26:6a:b2:1c:19:b8:
 b5:5c:c7:03:6b:f7:70:9e:72:85:c9:29:55:f9:f4:a4:f2:b4:
 3b:3d:ce:25:96:67:32:1e:8d:e2:00:22:55:4b:05:4f:ee:0e:
 67:ac:db:1b:61:da:5f:9c:10:1c:0c:05:66:c0:5b:5f:b9:95:
 59:a9:58:5b:e7:69:ac:b0:bd:b3:c2:a3:35:58:01:a4:ff:c0:
 8d:ac:1c:19:21:41:50:fb:8e:e0:f5:a9:ad:ec:de:cb:53:04:
 a9:d8:ac:76:8a:09:0d:7c:c6:1a:bc:06:74:bb:10:1c:aa:07:
 f6:cb:b2:1b:0c:0c:65:03:45:2b:51:d5:6e:a0:4d:91:ce:c5:

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 49

 ed:8d:a9:e7:f6:37:7d:ab:1b:a4:a2:a3:3b:76:17:5b:d9:3a:
 9c:c1:df:cc:cd:a0:b0:a9:5c:74:61:d7:a0:1d:04:67:68:ee:
 a6:7b:1e:41:a4:02:fc:65:9e:e3:c1:c2:57:b2:2e:b0:ff:a9:
 86:82:35:4d:29:b2:fe:74:2e:b8:37:5d:2b:e8:69:f2:80:29:
 19:f1:1e:7a:5d:e3:d2:51:50:46:30:54:7e:b8:ad:59:61:24:
 45:a8:5a:fe:19:ff:09:31:d0:50:8b:e2:15:c0:a2:f1:20:95:
 63:55:18:a7:a2:ad:16:25:c7:a3:d1:f2:e5:be:6d:c0:50:4b:
 15:ac:e0:10:5e:f3:7b:90:9c:75:1a:6b:e3:fb:39:88:e4:e6:
 9f:4c:85:60:67:e8:7d:2e:85:3d:87:ed:06:1d:13:0b:76:d7:
 97:a5:b8:05:76:67:d6:41:06:c5:c0:7a:bd:f4:c6:5b:b2:fd:
 23:6f:1f:57:2e:df:95:3f:26:a5:13:4d:6d:96:12:56:98:db:
 2e:7d:fd:56:f5:71:b7:19:2b:c9:de:2d:b9:c8:17:cc:20:de:
 7c:19:7a:aa:12:97:1c:80:b7:d3:67:d3:b7:a7:96:f0:c9:4d:
 f5:8b:0e:10:3b:b9:4e:09:90:5a:3b:51:c9:48:a2:ca:9f:db:
 72:44:87:59:db:49:fa:75:44:b5:f6:7f:c5:26:e1:01:ae:7b:
 6f:4a:75:d1:b5:b3:68:c0:31:48:f8:5c:06:c0:f1:b4:96:e8:
 38:e8:ad:44:3d:0a:8c:03:b6:2c:86:6a:f0:39:de:84:4b:2e:
 91:18:d1:45:65:d8:64:f5

Create a ConfigMap in Kubernetes Cluster

After downloading the certificate locally on your machine, create a ConfigMap in the
Kubernetes cluster that will copy the root CA certificate on your local machine into
the Kubernetes cluster.

To create the ConfigMap, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
 --from-file=./certs/root.democa.illumio-demo.com.crt

The --from-file option points to the path where the root CA certificate is stored on
your local machine.

To verify that the ConfigMap was created correctly, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
 > --from-file=./certs/root.democa.illumio-demo.com.crt
 configmap/root-ca-config created
 $
 $ kubectl -n illumio-system get configmap

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Prepare Your Environment

Illumio Core for Kubernetes and OpenShift 5.1 50

 NAME DATA AGE
 root-ca-config 1 12s
 $
 $ kubectl -n illumio-system describe configmap root-ca-config
 Name: root-ca-config
 Namespace: illumio-system
 Labels: <none>
 Annotations: <none>

 Data
 ====
 root.democa.illumio-demo.com.crt:

 -----BEGIN CERTIFICATE-----
 MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
 ---output suppressed---
 wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
 -----END CERTIFICATE-----

 Events: <none>
 $

 root-ca-config is the name used to designate the ConfigMap. You can modify it
according to your naming convention.

Configure Calico in Append Mode
In case your cluster is configured with Calico as the network plugin (usually for Kuber-
netes and not for OpenShift), both Calico and Illumio Core will write iptables rules on
the cluster nodes.

 l Calico - Needs to write iptables rules to instruct the host how to forward packets
(overlay, IPIP, NAT, and so on).

 l Illumio Core - Needs to write iptables rules to secure communications between
nodes and/or Pods.

You should establish a hierarchy to make the firewall coexistence work smoothly
because Illumio Core and Calico will write rules at the same time. By default, both solu-
tions are configured to insert rules first in the iptables chains/tables and Illumio Core
will remove other rules added by a third-party software (in the Exclusive mode).

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Create a Container Cluster in the PCE

Illumio Core for Kubernetes and OpenShift 5.1 51

To allow Calico to write rules along with Illumio without flushing rules from one
another, you should:

 l Configure Illumio to work in Firewall Coexistence mode (default for workloads
that are part of a container cluster).

 l Configure Calico to work in Append mode (default is Insert mode).

To configure Calico to work in Append mode with iptables:

 1. Edit the Calico DaemonSet.

kubectl -n kube-system edit ds calico-node

 2. Locate the spec: > template: > spec: > containers: section inside the YAML file and
change ChainInsertMode by adding the following code block:

- name: FELIX_CHAININSERTMODE

 value: Append

 3. Save your changes and exit.

 4. Kubernetes will restart all Calico Pods in a rolling update.

For more information on changing Calico ChainInsertMode, see Calico documentation.

Create a Container Cluster in the PCE
To provide visibility and enforcement to your containerized environment, you first
need to create a container cluster in the PCE. Each container cluster maps to an exist-
ing Kubernetes or OpenShift cluster.

Create a Container Cluster
To create a new container cluster:

 1. Log into the PCE web console as a user with Global Organization Owner priv-
ileges.

 2. From the PCE web console menu, navigate to Infrastructure > Container
Clusters.

 3. Click Add.

 a. Add a Name.

 b. Save the Container Cluster.

https://docs.projectcalico.org/reference/felix/configuration

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Create a Container Cluster in the PCE

Illumio Core for Kubernetes and OpenShift 5.1 52

 4. You will see a summary page of the new Container Cluster. From the Cluster Pair-
ing Token section, copy the values of the Cluster ID and Cluster Token.

 5. After copying and saving the values (in a text editor or similar tool), open the
Container Workload Profiles page.

Configure a Container Workload Profile Template
When configuring a new Container Cluster, it is recommended to set the default set-
tings shared by all the Container Workload Profiles. Illumio provides a Container Work-
load Profile template that can be used for that purpose. By defining the default Policy
State and minimum set of labels common to all namespaces in the cluster, you will
save time later on when new namespaces are discovered by Kubelink. Each new pro-
file created will inherit what was defined in the template.

IMPORTANT:
Illumio does not provide a method to redefine at once all the labels asso-
ciated with each profile. Hence, it is strongly recommended to use the
provided template to define the default values for all profiles that are part
of the same cluster.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy Kubelink in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 53

To define the default parameters for all profiles using a template, under Container
Workload Profiles, click Edit default settings and select values for all the fields.

For information about assigning default labels in the template, see Labels Restrictions
for Kubernetes Namespaces.

After you click OK, the following information is displayed:

Deploy Kubelink in Your Cluster
Download the required resources such as, Kubelink docker image, secret, and deploy-
ment files from the Illumio Support portal (login required).

Prerequisites

 l Kubelink deployment file provided by Illumio.

 l Kubelink secret file provided by Illumio.

 l Illumio's Kubelink docker image uploaded to your private docker registry.

Configure Kubelink Secret
This section assumes that you have created a Container Cluster object in the PCE. You
will need the Cluster ID and Cluster Token values for the Kubelink secret.

 1. Open the Kubelink secret YAML file and modify the following keys that are listed
under stringData:

 a. ilo_server = the PCE URL and port. Example: https://mypce.example.com:8443

 b. ilo_cluster_uuid = Cluster ID value from previous step. Example: 15643adc-
ac09-40f2-be63-fd9a261f41cc

 c. ilo_cluster_token = Cluster Token from previous step. Example: 1_
e94c116a4485ab1bb8560728afd6a332182b849c841297f63e73a87bf255cc96

https://support.illumio.com/software/index.html

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy Kubelink in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 54

 d. ignore_cert = SSL verification. The value is boolean and is recommended to
be set to false so that Kubelink requires PCE certificate verification.
Example: 'false'

 e. log_level = Log level where '0' for debug, '1' for info, '2' for warn, or '3' for
error. Example: '1'

IMPORTANT:
Illumio does not recommend turning off SSL verification (ignore_cert:
'true'). However, this is an option for deployments in which the PCE
uses a self-signed certificate. For PCE deployments using a certificate
signed with a private PKI, there is no need to set the ignore_cert key to
'false'. For more details, see Create a ConfigMap to Store Your Root
CA Certificate.

The contents of a modified illumio-kubelink-secret.yml file are shown below.

#
 # Copyright 2013-2021 Illumio, Inc. All Rights Reserved.
 #

 apiVersion: v1
 kind: Secret
 metadata:
 name: illumio-config
 namespace: illumio-system
 type: Opaque
 stringData:
 ilo_server: https://mypce.example.com:8443 # Example:
https://mypce.example.com:8443
 ilo_cluster_uuid: 42083a4d-dd92-49e6-b495-6f84a940073c # Example: cc4997c1-
408b-4f1d-a72b-91495c24c6a0
 ilo_cluster_token: 10_
d1ea040af1fb0ef60d2660fa093cfb9fad46462a33b887c9ba8a3e3bac1a95d # Example:
170b8aa3dd6d8aa3c284e9ea016e8653f7b51cb4b0431d8cbdba11508763f3a3
 ignore_cert: 'false' # Set to 'true' to ignore the PCE certificate
 log_level: '1' # Default log level is info

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy Kubelink in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 55

NOTE:
If you are going to use a private PKI to sign the PCE certificate, see
Create a ConfigMap to Store Your Root CA Certificate before deploy-
ing Kubelink.

 2. Save the changes.

 3. Create the Kubelink secret in your Kubernetes or OpenShift cluster.

 o Deploy Kubelink secret in Kubernetes:

kubectl apply -f illumio-kubelink-secret.yml

 o Deploy Kubelink secret in OpenShift:

oc apply -f illumio-kubelink-secret.yml

 4. Verify the Kubelink secret creation in your Kubernetes cluster.

 o Verify Kubelink secret in Kubernetes:

kubectl get secret -n illumio-system

 o Verify Kubelink secret in OpenShift:

oc get secret -n illumio-system

Deploy Kubelink
Modify the Kubelink configuration file to point to the correct Docker image. The
example in this document has illumio-kubelink:2.0.x.xxxxxx uploaded to registry.ex-
ample.com, so the image link in this example is: registry.example.com/illumio-
kubelink:2.0.x.xxxxxx

 1. Edit the Kubelink configuration YAML file. The file name is illumio-kubelink-kuber-
netes.yml for a Kubernetes cluster or illumio-kubelink-openshift.yml for an
OpenShift cluster.

 o Locate the spec: > template: > spec: > containers: section inside the YAML
file. Modify the image link in the image: attribute.

 2. Save the changes.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy Kubelink in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 56

Below is a snippet from an example of the Kubelink configuration for Kubernetes
to illustrate the image location.

apiVersion: apps/v1beta1
 kind: Deployment
 metadata:
 name: illumio-kubelink
 namespace: illumio-system
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 labels:
 app: illumio-kubelink
 spec:
 # nodeSelector:
 # node-role.kubernetes.io/master: ""
 serviceAccountName: illumio-kubelink
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 containers:
 - name: illumio-kubelink
 image: registry.example.com/illumio-kubelink:2.0.x.xxxxxx
 imagePullPolicy: Always
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-kubelink-config
 key: ilo_server

 3. (Optional) Reference your root CA certificate.
If you are using a private PKI to sign the PCE certificate, make sure you add the
references to the root CA certificate that signed the PCE certificate. By default,

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy Kubelink in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 57

the current manifest file provided by Illumio does not include this modification.
Open the .yml file and add the following code blocks:

 o volumeMounts (under spec.template.spec.containers)

 o volumes (under spec.template.spec)

root-ca is the name used to designate the new volume mounted in the container.
You can modify it according to your naming convention.

 volumeMounts:
 - name: root-ca
 mountPath: /etc/pki/tls/ilo_certs/
 readOnly: false
 volumes:
 - name: root-ca
 configMap:
 name: root-ca-config

 4. (Optional) Reference your container registry secret. See the Authenticate Kuber-
netes Cluster with Container Registry section.
In case you need to authenticate against your container registry when you pull
an image from your cluster, you must make reference to the secret previously
created for the container registry. Locate the spec: > template: > spec: section
inside the YAML file and add the following lines:

 imagePullSecrets:
 - name: <container-registry-secret-name>

IMPORTANT:
Indentation matters in a YAML file. Make sure there are 6 spaces to
the left before inserting the 'imagePullSecrets' keyword and align the
'-' character below it with the 'i' of the 'imagePullSecrets' keyword.

 5. Deploy Kubelink.

 o To deploy Kubelink for Kubernetes:

kubectl apply -f illumio-kubelink-kubernetes.yml

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy Kubelink in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 58

 o To deploy Kubelink for OpenShift:

oc apply -f illumio-kubelink-openshift.yml

 6. Verify your deployment.

 o To check the Kubelink Pod status for Kubernetes:

kubectl get pods -n illumio-system

 o To check the Kubelink Pod status for OpenShift:

oc get pods -n illumio-system

The illumio-kubelink-xxxxxxxxxx-xxxxx Pod should be in the "Running" state.

After Kubelink is successfully deployed, you can check the cluster information in the
Illumio PCE UI. From the main menu, navigate to Infrastructure > Container Clusters.

Below is an example of a healthy container cluster state reported by Kubelink, where
Status is "In Sync".

You can also verify in the PCE UI that Kubelink was successfully deployed by checking
the following:

 l Under the Container Workload Profiles tab, namespaces created in your Kuber-
netes or OpenShift cluster should be listed. An example is shown below.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 59

 l Under Policy Objects > Virtual Services, services created in your Kubernetes or
OpenShift cluster should be listed. An example is shown below.

Deploy C-VENs in Your Cluster

IMPORTANT:
Before deploying the C-VEN, ensure that either of the following two require-
ments has been met:

 l Kubelink is deployed on the Kubernetes cluster and is in sync with the
PCE, or

 l Firewall coexistence is enabled.

Prerequisites

 l VEN deployment file provided by Illumio.

 l VEN secret file provided by Illumio.

 l Illumio's C-VEN docker image uploaded to a private container registry.

 l In OpenShift, create the 'illumio-ven' service account in the 'illumio-system' pro-
ject and add this account to the privileged Security Context Constraint (SCC):

 o oc create sa illumio-ven

 o oc adm policy add-scc-to-user privileged -z illumio-ven -n illumio-system

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 60

Create a Pairing Profile for Your Cluster Nodes
Before deploying the C-VEN in your cluster, you should create a pairing profile to pair
the cluster nodes with the PCE. You only need to create one pairing profile for all your
nodes.

NOTE:
You only need to create pairing profiles for Kubernetes or OpenShift nodes
and not for container workloads.

For ease of configuration and management, consider applying the same Application,
Environment, and Location labels across all nodes of the same Kubernetes or
OpenShift cluster. The screenshot below shows an example of a pairing profile for a
Kubernetes cluster.

TIP:
Illumio recommends all pairing profiles for Kubernetes nodes to not use
Enforced policy state. Use Build or Test mode for initial configuration.

You should only move them into enforced state after you have completed
all other configuration steps in this guide, such as setup Kubelink, discover
services, and write rules.

Configure C-VEN Secret
This section assumes that you have already created a Pairing Profile in the PCE. You
will need the activation code for the C-VEN secret.

 1. To retrieve the activation code from the pairing profile, go to Policy Objects >
Pairing Profiles, open the pairing profile created for your cluster nodes, and click
Generate Key.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 61

 2. After copying and saving the Key (in a text editor or similar tool), you can exit
the page.

 3. Open the C-VEN secret YAML file and modify the following keys (under
stringData):

 o ilo_server = PCE URL and port. Example: mypce.example.com:8443

 o ilo_code = Activation code value from Step 1. Example: 1ed-
b64b4d914142fce5b69ed543b2481a1afc387aaa5a759b2cd59f678c260173-
e071584f6b22ea3d

Contents of a modified illumio-ven-secret.yml file are shown below.

#
 # Copyright 2013-2021 Illumio, Inc. All Rights Reserved.
 #
 # VEN 21.5.x-xxxx

 apiVersion: v1
 kind: Secret
 metadata:
 name: illumio-ven-config
 namespace: illumio-system
 type: Opaque
 stringData:
 ilo_server: mypce.example.com:8443 # Example: mypce.example.com:8443
 ilo_code:

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 62

1edb64b4d914142fce5b69ed543b2481a1afc387aaa5a759b2cd59f678c260173e071584f6b22
ea3d # activation-code

CAUTION:
Do not use 'https://' for the value associated with the ilo_server: key.
This is a known issue and will be fixed in a future release.

 4. Save the changes.

 5. Create the C-VEN secret using the file.

 o To create the secret for Kubernetes:

kubectl apply -f illumio-ven-secret.yml

 o To create the secret for OpenShift:

oc apply -f illumio-ven-secret.yml

 6. Verify the C-VEN secret creation in your cluster.

 o To verify the creation of the secret for Kubernetes:

kubectl get secret -n illumio-system

 o To verify the creation of the secret for OpenShift:

oc get secret -n illumio-system

Deploy C-VENs
Modify the C-VEN configuration file to point to the correct Docker image. The
example in this document has illumio-ven:21.5.x-xxxx uploaded to registry.ex-
ample.com:443, so the image link in this example is: registry.example.com:443/illumio-
ven:21.5.x-xxxx

 1. Edit the C-VEN configuration YAML file. The file name is illumio-ven-kuber-
netes.yml for a Kubernetes cluster and illumio-ven-openshift.yml for an OpenShift
cluster.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 63

 o Locate the spec: > template: > spec: > containers: section inside the YAML
file. Modify the image link in the image: attribute.

 2. Save the changes.

Below is a snippet from an example of the C-VEN configuration for Kubernetes
or OpenShift to illustrate the image location.

#
 # Copyright 2013-2021 Illumio, Inc. All Rights Reserved.
 #
 # VEN 21.5.x-xxxx

 apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: illumio-ven
 namespace: illumio-system

 apiVersion: apps/v1
 kind: DaemonSet
 metadata:
 name: illumio-ven
 namespace: illumio-system
 labels:
 k8s-app: illumio-ven
 spec:
 selector:
 matchLabels:
 name: illumio-ven
 template:
 metadata:
 labels:
 name: illumio-ven
 spec:
 priorityClassName: system-node-critical
 serviceAccountName: illumio-ven
 hostNetwork: true
 hostPID: true

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 64

 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 containers:
 - name: illumio-ven
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_server
 - name: ILO_CODE
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_code
 command: ["/ven-init", "activate"]
 image: registry.example.com/illumio-ven:21.5.x-xxxx
 imagePullPolicy: IfNotPresent
 <...>

 3. (Optional) Reference your root CA certificate.
If you are using a private PKI to sign your PCE certificate, make sure you add the
references to the root CA certificate that signed the PCE certificate. If Kubelink
is already deployed in the cluster, the ConfigMap used to store the root CA cer-
tificate should already be created in the cluster.

Add the following sections to the C-VEN manifest file to reference the Con-
figMap containing the root CA certificate:

 o volumeMounts (under spec.template.spec.containers)

 o volumes (under spec.template.spec)

root-ca is the name used to designate the new volume mounted in the container.
You can modify it according to your naming convention.

 volumeMounts:
 - name: root-ca
 mountPath: /etc/pki/tls/ilo_certs/

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 65

 readOnly: false
 volumes:
 - name: root-ca
 configMap:
 name: root-ca-config

 4. (Optional) Reference your container registry secret. See the Authenticate Kuber-
netes Cluster with Container Registry section.

In case you need to authenticate against your container registry when you pull
an image from your cluster, you must make reference to the secret previously
created for the container registry. Locate the spec: > template: > spec: section
inside the YAML file and add the following lines:

 imagePullSecrets:
 - name: <container-registry-secret-name>

IMPORTANT:
Indentation matters in a YAML file. Make sure there are 6 spaces to
the left before inserting the 'imagePullSecrets' keyword and align the
'-' character below it with the 'i' of the 'imagePullSecrets' keyword.

 5.

NOTE:
From the 20.2.0 and later releases, the container runtime detection is
done automatically. You do not need to manually modify the con-
tainer runtime socket path. You should do this 'Modify the container
runtime socket path' step only if you are using a customized con-
figuration for your container runtime.

(Optional) Modify the container runtime socket path.

In some cases, you have to modify the default socket path the C-VEN relies on to
get information about the containers due to the following reasons:

 o A non-conventional or customized container runtime socket path

 o Two concurrent container runtimes

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Deploy C-VENs in Your Cluster

Illumio Core for Kubernetes and OpenShift 5.1 66

In this case, you may have to modify the default mount path for the unixsocks
volume in the C-VEN configuration file.

For example, you want to listen on the 'containerd' container runtime, however,
docker is also used on the nodes. You should modify the file as shown below, so
that the C-VEN listens to events on 'containerd':

 volumeMounts:
 - name: unixsocks
 mountPath: /var/run/containerd/
 <...>
 volumes:
 - name: unixsocks
 hostPath:
 path: /var/run/containerd/
 type: Directory
 <...>

 6. Save the changes.

 7. Deploy C-VEN.

 o For Kubernetes:

kubectl apply -f illumio-ven-kubernetes.yml

 o For OpenShift:

oc apply -f illumio-ven-openshift.yml

 8. Verify the deployment.

 o For Kubernetes:

kubectl get pods -n illumio-system

 o For OpenShift:

oc get pods -n illumio-system

The illumio-ven-xxxxxxxxxx-xxxxx Pods should be in the "Running" state.

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Re-Label Your Cluster Nodes

Illumio Core for Kubernetes and OpenShift 5.1 67

After C-VENs are successfully deployed, you can check the cluster information in the
Illumio PCE UI. From the main menu, navigate to Infrastructure > Container Clusters.

You can also verify in the PCE UI that the C-VENs were successfully deployed by
checking the following:

 l Under the Workload tab, nodes that are part of your Kubernetes or OpenShift
cluster should be listed. An example is shown below.

 l Under the Container Workloads tab, Pods deployed in your Kubernetes or
OpenShift cluster should be listed. An example is shown below.

 l Illumination Map now displays system and application Pods running in your
cluster.

Re-Label Your Cluster Nodes

NOTE:
Re-labeling the cluster nodes is optional.

In the case of self-managed deployments in which both Master and Worker nodes are
managed, you may want to re-label your nodes to differentiate Master nodes from
Worker nodes. Doing this helps when you are writing different policies for the Worker
and Master nodes or if you want to segment these nodes differently.

To re-label your cluster nodes:

Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
Re-Label Your Cluster Nodes

Illumio Core for Kubernetes and OpenShift 5.1 68

 1. In the PCE UI, go to Infrastructure > Container Clusters > YourClusterName >
Workloads.

 2. Select the workloads you want to re-label.

 3. Click Edit Labels to assign the new labels (for example, Master and Worker).

 4. After re-labeling your cluster nodes, the nodes part of the cluster reflect the
updated label(s).

Illumio Core for Kubernetes and OpenShift 5.1 69

Configure Labels for Namespaces, Pods,
and Services

This chapter contains the following topics:

Use Container Workload Profiles 69

Using Annotations 79

Once Kubelink is deployed onto the Kubernetes cluster and it gets synced with the
PCE, the namespaces within the cluster appear as Container Workload Profiles. By
default, all namespaces are unmanaged, which means Illumio does not apply any
inbound or outbound controls to the Pods within those namespaces. Any Pods or ser-
vices within unmanaged namespaces do not show up in the PCE inventory or in Illu-
mination.

Use Container Workload Profiles
The Illumio PCE administrator can change a Kubernetes namespace from unmanaged
to managed by modifying the Container Workload Profile. Each profile can be mod-
ified even if the Illumio C-VEN is not yet installed on the Kubernetes nodes. If the C-
VEN is deployed on the cluster nodes and Container Workload Profile is in the man-
aged state, the Pods and services are displayed in Illumination, and they inherit the
labels assigned to the Kubernetes namespace.

In non-CLAS environments, the Pods are represented in Illumio Core as Container
Workloads. In CLAS-mode environments (available after Illumio Core for Kubernetes
and OpenShift 5.0.0), the Kubernetes Workloads are represented independent of

Chapter 3

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 70

what Pods might exist at the time in Kubernetes for these workloads. These Kuber-
netes Workloads are shown separately in the PCE UI from any non-CLAS Container
Workloads. If Kubernetes services exist in the respective namespace, Illumio Core rep-
resents each service as an Illumio Core Virtual Service object. In CLAS mode, only
NodePort and LoadBalancer service types are shown in the PCE UI as Virtual Service
objects.

This section describes how to change a namespace from unmanaged to managed,
and how to use labels and custom annotations to add more context to your applic-
ations. This section also describes how to set enforcement boundaries for your con-
tainerized workloads.

 1. Log in to the PCE UI and navigate to Infrastructure > Container Clusters.

 2. Select the Container Cluster you want to manage.

 3. Select the Container Workload Profiles tab.

 4. You will see a list of all namespaces in the cluster. Select the namespace you
want to manage.

 5. Click Edit:

 a. Enter a Name (optional).

 b. Select a Management state (any state, except unmanaged).

 c. Select an Enforcement mode for how policy rules will be enforced.

 d. Select a Visibility state.

 e. Assign Labels (optional).

 f. Click Save.

Configure New Container Workload Profiles
A Container Workload Profile is beneficial when you want to assign labels to
resources that are deployed in a namespace and also define the state of the policy cre-
ated for the scope of labels assigned. A new Container Workload Profile can be cre-
ated in either of the following ways:

 l Dynamically created through the creation of a new namespace in the Kuber-
netes or OpenShift cluster. This is a reactive option in which the Illumio Core
Administrator assigns labels and a policy state after the creation of the
namespace.

 l Manually pre-created to assign labels and a policy state to a namespace that will
be created later on. This is a proactive option in which the Illumio Core Admin-
istrator assigns labels and a policy state before the creation of the namespace.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 71

This option offers the best-in-class security mechanism and authenticates each
namespace created in the cluster by leveraging the concept of pairing key
(same concept that Illumio Core provides in a pairing profile).

TIP:
For a best-in-class security deployment, Illumio recommends to proactively
create pairing profiles and assign labels and a policy state to them. The pair-
ing key for each profile can be provided to the DevOps team for
namespaces deployments later on.

When a Container Cluster is created for the first time in the PCE, Kubelink will report
the existing namespaces or projects in the cluster. These namespaces will inherit what
was defined as part of the Container Workload Profile Template for that cluster.

Dynamic Creation of a Profile
When the team managing Kubernetes or OpenShift clusters creates a namespace in a
cluster, this namespace is reported immediately to the PCE via Kubelink. The new
namespace will be listed under Container Workload Profiles and the following scen-
arios can occur:

 l A Container Workload Profile Template exists for this cluster - The new
namespace will inherit what was defined in the template, as far as Policy state
and labels are concerned.

 l A Container Workload Profile Template does not exist for this cluster - The new
namespace will remain blank until further edited by an Illumio Core Admin-
istrator.

The example below shows a new namespace "namespace1" created in a cluster where
a Container Workload Profile Template exists with a policy state set to "Build" and a
partial label assignment as "Development | Cloud":

NOTE:
The namespace is created by the Kubernetes or OpenShift administrator
(outside the scope of Illumio Core).

For example, to edit the "namespace1" namespace:

 1. Click on it and then click Edit.

 2. Enter a Name.

 3. Assign missing Labels wherever relevant or modify the existing ones.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 72

See Labels Restrictions for Kubernetes Namespaces.

 4. After you are done, click Save.

The updates are displayed in the Container Workload Profiles list.

Manual Pre-creation of a Profile
To pre-create a profile:

 1. In the Container Workload Profiles page, click Add.

 2. Enter a Name.

 3. Select the desired Management state.

 4. Select the Enforcement state.

 5. Choose a Visibility state. Note that Enhanced Data Collection is an optional fea-
ture that you must contact Illumio Support to enable.

 6. Assign Labels to the profile.

See Labels Restrictions for Kubernetes Namespaces.

 7. Click Save.

 8. Click Copy Key and provide this key to the DevOps team, which will be used as
an annotation in a namespace manifest file to authenticate this resource with the
PCE.

You can view the newly-created Container Workload Profile. The status is in "Pend-
ing" state with the hourglass icon displayed next to it.

To edit the namespace configuration file to include the pairing key in order to authen-
ticate this namespace with the PCE:

 1. Navigate to metadata: > annotations:. If annotations: does not exist, create an
annotations: section under metadata:.

 2. Add the com.illumio.pairing_key: Illumio label key field under the annotations:
section.

 o Enter the pairing key obtained during the new Container Workload Profile
creation.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 73

 o Save the file and exit.

 3. Apply the change using kubectl commands.

An example is show below.

apiVersion: v1
 kind: Namespace
 metadata:
 name: namespace2
 annotations:
 com.illumio.pairing_key:
abc8aaffdb2101e13a9da02bf492badb8d09d5ce338af116d076aef77558afcd

The updates are displayed in the Container Workload Profiles list.

Set Enforcement
Set an Enforcement Boundary to establish how policy rules affect traffic to and from
namespace workloads. Enforcement Boundaries can be one of the following:

 l Visibility Only - Rules are not enforced an any traffic.

 l Selective - Rules are enforced only for selected traffic.

 l Full - Rules are enforced for all traffic.

An Enforcement Boundary can be applied only to Managed workloads, which means
Idle workloads cannot have an enforcement state applied to them.

You can change Enforcement for multiple profiles of the same current Enforcement
level by selecting the checkboxes for the desired profiles (or by selecting the check-
box in the table heading row to select all profiles), and then hovering over the Enforce-
ment button, which then shows a list of new Enforcement states and how many
profiles will be changed to that state. Note that when you change Enforcement to
Selective, then Visibility mode must by Blocked & Allowed, which is automatically
done for you.

Labels Restrictions for Kubernetes Namespaces
At a high level, creating policy for containerized applications functions in the same
basic way as for other types of applications running on bare-metal servers and virtual
machines protected by the Illumio Core. Container workloads (and Pods represented

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 74

by Kubernetes Workloads in CLAS-enabled environments) are assigned multi-dimen-
sional labels to identify their roles, applications, environments, locations (RAEL), or
other custom label types. These labels can then be used to apply security policies to
specific parts of the containerized application environment. The PCE converts these
label-based policies into rules that can be applied to the containerized workloads via
the C-VEN or, in CLAS-enabled environments, via Kubelink.

In previous releases, the PCE supported two options for assigning labels to container
workloads:

 l When creating or editing a container workload profile in the PCE web console or
by using the Illumio Core REST API, an Illumio administrator assigned labels for
the resources in that Kubernetes namespace.

 l The Illumio administrator did not assign labels in the container workload profile.
The DevOps/SRE team could use custom annotations in the service and deploy-
ment manifest files (YAML) to apply labels to the pods and services running in a
namespace. On receiving this information from Kubelink, the PCE applied these
labels to the container workloads, as long as the labels matched existing labels in
the PCE.

These two ways of assigning labels for container workloads are sufficient for most con-
tainer segmentation uses cases; however, this approach lacks the flexibility with label
assignment for namespaces requested by Illumio customers. However, there is an
alternative in addition to those two options that still allows developers/DevOps teams
to assign their own labels for Kubernetes pods and services, but at the same time
restricts the list of labels that they can assign. Illumio administrators now have a way
to control which labels can be assigned by the developers managing their Kubernetes
environments.

Options for Assigning Labels with a Container Workload Profile

You assign labels with Container Workload Profiles in a number of ways:

 l By creating a new Container Workload Profile; see Manual Pre-creation of a Pro-
file.

 l By editing a Container Workload Profile that was dynamically created in the PCE
when Kubelink imported a new Kubernetes namespace; see Dynamic Creation of
a Profile.

 l By specifying label assignments in the default settings for the Container Work-
load Profile template; see Configure New Container Workload Profiles.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 75

Previously, four standard label types were predefined (Role, Application, Envir-
onment, and Location) for setting labels with a Container Workload Profile. Now you
can define custom label types and values in addition to these four predefined labels.
You also have the following options:

 l Do not allow a label for a specific label type (the “None” option).

 l Allow developers to assign any label from Kubernetes for a specified label type
(the “Use Container Annotations” option); so long as the labels match ones in
the PCE.

In previous releases, when the PCE administrator left the labels unassigned in the GUI
or through the REST API, labels specified in annotations were used. Now the “Use Con-
tainer Annotations” option is selected by default for all labels in a container workload
profile (provided the default settings for the cluster are not configured).

 l Specify a list of labels that are allowed for that label type.

 l Fix a label to a specific label for that label type (the “Assign Label” option).

Example: Assigning Labels with a Container Workload Profile

The following example shows how you can use each of the four standard predefined
options:

Adding, Editing, or Removing Labels

To add one or more labels:

 1. Click a profile name, then click Edit.
To apply the same label edits to multiple profiles, click the checkboxes for the

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 76

desired profiles (or click the topmost checkbox in the table heading to select all
profiles), then click Edit Labels.

 2. Under the Labels heading, add a label type by clicking the field under the Label
Type heading and then choose a label type from the list.

 3. Choose a Label Assign Type:

 o Use Container Annotations - Use label values for container annotations.
See Using Annotations for more information.

 o Assign Label - Explicitly set labels from the values configured for this label
type.

 o No Label Allowed - Prevent this label type from being used in this profile.

 4. Specify labels for this label type by clicking the field under Labels Allowed/Label
Assign, and choosing a label from the list.

Any label type defined from annotations or explicit assignments must also have
a label value specified in order to add the label definitions to the profile.

 5. Click Save when finished.

To remove label types (and their associated label values):

 1. Click the profile name.

 2. Click Edit.

 3. Under the Labels heading, choose one or more types to delete from this profile
by clicking the checkboxes in front of the Label Type name.

 4. Click Remove.

To remove or change label values:

 1. Click the desired profile name.

 2. Click Edit.

 3. In the Labels table, remove a label value by clicking the small "x" near the label
name under the Labels Allowed/Label Assign column.
You can replace or add label values by clicking the Select Label or Select Labels
field under Labels Allowed/Label Assign column, and then choosing the new
label (or in the case of Annotations, multiple labels).

 4. Click Save.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 77

General Label Guidelines

 l Specifying a Role label in Kubernetes is not allowed; essentially, the Role label
annotation (com.illumio.role:) is ignored when passed at runtime and reported
by Kubelink to the PCE. The PCE ensures that a label is not assigned for the Role
label key for the resources in this Kubernetes namespace.

 l Developers can specify any label for Applications, so long as the label matches a
preexisting label in the PCE.

 l For Environment, a list of two labels (env1 and env2) is available. Developers can
set either of these labels in Kubernetes. If a developer sets another value for the
Environment label as a Kubernetes annotation, the PCE considers it invalid and,
as a result, a label is not assigned to that label key. Because the wrong label is
assigned, the policy will not allow expected traffic from other services or applic-
ations with the Environment label env1.

 l The Location label is fixed as the loc1 label. If a developer assigns another Loca-
tion label (for example, loc3, which is a label in the PCE) or the developer leaves
the Location label empty, the PCE overrides what the developer has specified in
the annotation and the PCE assigns loc1 for the Location label.

The label assignments for that namespace appears in the Container Clusters list in the
PCE web console.

For this example, you can see the label assignments mirrored in the Kubernetes
annotation for the namespace:

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Use Container Workload Profiles

Illumio Core for Kubernetes and OpenShift 5.1 78

Where a developer set role1, app1, env1, and loc100 for the labels in the annotations.
Kubelink passes this data to the PCE at runtime. The PCE ignores the Role label
because it's not allowed. It accepts the Application and Environment labels. It ignores
the loc100 label and uses loc1 instead.

In the Container Workloads tab, you can see how the label assignments are applied
for the Pod in this example.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 79

NOTE:
If a developer sets another value for the Environment label as a Kubernetes
annotation, the PCE considers it invalid and, as a result, a label is not
assigned to that label key. Because the wrong label is assigned, the policy
will not allow expected traffic from other services or applications.

For example, in the Kubernetes annotations, a developer leaves the Environment label
empty or specifies env100, the PCE uses the following labels for the namespace and
you won't have policy for applications or services with the Environment label env1.

Effect of Upgrading the PCE to Core 21.1.0 or Later

After upgrading your PCE to Core 21.1.0 or later, the labels assignments for your Kuber-
netes namespaces are not impacted operationally. However, you will see changes in
the PCE web console and in the REST API.

 l The values set in the PCE in the previous Core release are unchanged and the
“Assign Label” option is selected in the PCE web console and through the REST
API.

 l The values left open so that container annotations were used for label assign-
ments are updated to the “Use Container Annotations” option and the label
assignments won't be restricted by any settings in the PCE web console or
through the REST API.

Using Annotations

NOTE:
Illumio annotations operate differently in CLAS-mode clusters (optionally
available starting in Illumio Core for Kubernetes version 5.0.0) than in pre-
vious legacy (non-CLAS) environments.

The initial portion of this topic describes how to use annotations in legacy
non-CLAS clusters. After this initial portion, in the latter part of this topic,
you can find information about using annotations in CLAS-mode clusters,
described in the section Using Annotations in CLAS.

When assigning labels, you can assign no labels, some labels, or all labels to the
namespace. If there is a label that is not assigned, then you can insert annotations in
the deployment configuration (or application configuration) to assign labels. If there is
a conflict between a label assigned via the Container Workload Profile and the

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 80

annotations in the deployment configuration, the label from the Container Workload
Profile overrides the deployment configuration file. This security mechanism ensures
that a malicious actor cannot spoof labels and get a preferential security policy based
on a different scope. Regardless of how you assign labels, it is not required for Pods or
services to have all labels in order for the PCE to manage them.

To manually annotate the different resources created in a Kubernetes namespace or
OpenShift project, use the steps described in the sections below.

Deployments

 1. Edit the deployment configuration file:

 a. Navigate to spec: > template: > metadata: >
annotations:. If annotations: does not exist, create an annotations: section
underneath metadata:.

 b. The annotation can support any Illumio label key fields, including user-
defined label types, as well as the standard set of predefined Illumio labels:

 o com.illumio.role:

 o com.illumio.app:

 o com.illumio.env:

 o com.illumio.loc:

 c. Fill in the appropriate labels.

 d. Save the file and exit.

 2. Apply the change using kubectl commands.

Services

 1. Edit the deployment configuration file:

 a. Navigate to metadata: > annotations:. If annotations: does not exist, create
an annotations: section underneath metadata:.

 b. The following Illumio label key fields can be under the annotations: section.

 o com.illumio.role:

 o com.illumio.app:

 o com.illumio.env:

 o com.illumio.loc:

 c. Fill in the appropriate labels.

 d. Save the file and exit.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 81

 2. Apply the change using kubectl commands.

IMPORTANT:
When using the annotations method, you should redeploy the Pods or ser-
vices after saving the changes to the configuration files by using the kubectl
apply command.

Annotation Examples

Below are examples of namespaces, Pods, and services that use label assignments
using either Container Workload Profiles or Container Workload Profiles with annota-
tion insertion.

In the example shown below:

 l Kubernetes default services or control plane Pods exist within namespaces such
as, kube-system. They will inherit the Application, Environment, and Location
labels from what has been configured in the Container Workload Profile(s).
Kubelink is part of the illumio-system namespace, and because the Role label is
left blank on theillumio-system namespace, you should assign a Role to Kubelink
using annotations in the manifest file.

 l A new app1 namespace that contains two different deployments or a two-tier
application (Web and Database) is deployed. To achieve tier-to-tier seg-
mentation across the application they will need different Role labels. Therefore,
a Role label should be inserted into the annotations of each deployment con-
figuration.

A snippet of the illumio-kubelink deployment configuration file is shown below, and
the "Kubelink" Role label is inserted under the spec: > template: > metadata: > annota-
tions: section:

illumio-kubelink-kubernetes.yml

spec:
 replicas: 1
 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 annotations:

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 82

 com.illumio.role: Kubelink
 labels:
 app: illumio-kubelink
 spec:
 # nodeSelector:
 # node-role.kubernetes.io/master: ""
 serviceAccountName: illumio-kubelink
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule

A snippet of the app1's Web deployment configuration file is shown below, and the
"Web" Role label is inserted under the spec: > template: > metadata: > annotations:
section:

shopping-cart-web.yml

spec:
 replicas: 3
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: webapp1
 tier: frontend
 strategy:
 activeDeadlineSeconds: 21600
 resources: {}
 rollingParams:
 intervalSeconds: 1
 maxSurge: 25%
 maxUnavailable: 25%
 timeoutSeconds: 600
 updatePeriodSeconds: 1
 type: Rolling
 template:
 metadata:
 annotations:
 com.illumio.role: Web

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 83

 creationTimestamp: null
 labels:

A snippet of the app1's Database deployment configuration file is shown below and the
"Database" Role label is inserted under the spec: > template: > metadata: > annota-
tions: section:

shopping-cart-db.yml

spec:
 replicas: 2
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: redis
 role: slave
 tier: backend
 strategy:
 activeDeadlineSeconds: 21600
 recreateParams:
 timeoutSeconds: 600
 resources: {}
 type: Recreate
 template:
 metadata:
 annotations:
 com.illumio.role: Database
 creationTimestamp: null
 labels:

Below is the final outcome of the label assignment from the example.

Replace the following with a screenshot of the new CLAS-enabled UI:

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 84

In Illumination Map, the application groups will appear differently if you've assigned
labels on resources in the cluster.

DaemonSets and Replicasets
The steps described in the above section apply only to services in Kubernetes and
OpenShift which are bound to deployment or deploymentconfig (existing deployments).
This is due to the Kubelink's dependency on the Pod hash templates to map resources
together which DaemonSet and ReplicaSet configurations do not have. If you dis-
cover Pods derived from DaemonSet or ReplicaSet configurations and also discover
services bound to those Pods, then Kubelink will not automatically bind the virtual ser-
vice and service backends for the PCE. The absence of this binding will create lim-
itations with Illumio policies written against the virtual service.

To work around this limitation for DaemonSets and ReplicaSets follow the steps
below.

 1. Generate a random uuid using the uuidgen command (on any Kubernetes or
OpenShift node, or your laptop).

 2. Copy the output of the uuidgen command.

 3. Edit the DaemonSet or ReplicaSet YAML configuration file.

 4. Locate the spec: > template: > metadata: > labels: field in the YAML file and cre-
ate the Pod-template-hash: field under the labels: section.

 5. Paste the new uuid as the value of the Pod-template-hash: field.

 6. Save the changes.

Repeat steps 1 through 6 for each DaemonSet or ReplicaSet configuration.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 85

The examples below generate a random pod-template-hash value and it to
a DaemonSet configuration.

$ uuidgen
 9e6f8753-d8ac-11e8-9999-0050568b6a18
 $

$ cat nginx-ds.yml
 apiVersion: extensions/v1beta1
 kind: DaemonSet
 metadata:
 name: nginx-webserver
 spec:
 template:
 metadata:
 labels:
 app: nginx-webserver
 pod-template-hash: 9e6f8753-d8ac-11e8-9999-0050568b6a18
 spec:
 containers:
 - name: webserver
 image: rstarmer/nginx-curl
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80

Static Pods

Another way of deploying Pods without Deployments or ReplicaSet is by using 'Static
Pods'. In this case, a Pod is spun up by not depending on the API server and is man-
aged by an individual node's Kubelet. Static Pods are used to spin up control-plane
components such as, kube-apiserver, controller-manager, and scheduler. Static Pods
are useful if you want a pod to be running even if the Kubernetes control-plane com-
ponents fail. Unlike Naked Pods, if a static pod is not functional, kubelet spins up a
new static pod automatically by looking at the manifest file in the /etc/kuber-
netes/manifests directory.

Services for such pods can also be created without any selectors. In which case, you
need to manually create the EndPoint resources for such services without a selector.

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 86

For example, the default 'kubernetes' service in the default namespace which binds to
the API-Server Pod running on HostNetwork.

If you create Static Pods on an overlay network, you need to create a service without
selectors and manually create EndPoint resource to map the Pod to see the Container
Workload and the Virtual Service on the PCE. You will not see any bindings or
backends for this Virtual Service. In order to bind the Static Pods to the Virtual Ser-
vice, use the 'com.illumio.service_uids' annotation in the Static Pods manifest and con-
figure the service without selectors and manually create the EndPoints. Once the
'com.illumio.service_uids' annotation is used, you can bind the Container Workloads to
its Virtual Service.

Sample code: Place the Static Pod manifest in the /etc/kubernetes/manifests directory

[root@qvc-k8s-027-master01 manifests]# pwd
 /etc/kubernetes/manifests

 [root@qvc-k8s-027-master01 manifests]# cat network-tool.yml
 apiVersion: v1
 kind: Pod
 metadata:
 name: nw-tool1
 annotations:
 com.illumio.service_uids: <numerical-value>
 spec:
 containers:
 - name: nw-tool1
 image: praqma/network-multitool
 args: [/bin/sh, -c, 'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep
10; done']
 imagePullPolicy: IfNotPresent
 restartPolicy: Always

 [root@qvc-k8s-027-master01 ~]# cat nw-tool-endpoint.yaml
 apiVersion: v1
 kind: Endpoints
 metadata:
 name: nw-tool-svc
 namespace: default
 subsets:

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 87

 - addresses:
 - ip: <ip-value>
 ports:
 - name: http
 port: 80
 protocol: TCP

 [root@qvc-k8s-027-master01 ~]# cat nw-tool-svc.yaml
 apiVersion: v1
 kind: Service
 metadata:
 creationTimestamp: "2020-05-18T18:39:19Z"
 labels:
 app: nw-tool
 name: nw-tool-svc
 namespace: default
 resourceVersion: "29308511"
 selfLink: /api/v1/namespaces/default/services/nw-tool-svc
 uid: <numerical-value>
 spec:
 clusterIP: <ip-value>
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 80
 sessionAffinity: None
 type: ClusterIP
 status:
 loadBalancer: {}
 [root@qvc-k8s-027-master01 ~]#

IMPORTANT:
In the above code sample, you need to modify the following two values
based on your configuration:

 l uid: <numerical-value>

 l clusterIP: <ip-value>

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 88

Using Annotations in CLAS
Illumio annotations in CLAS-mode environments are specified on the Kubernetes
Workload, and not on a Pod's template, as is done in legacy non-CLAS environments.
This distinction follows from the concept of the Kubernetes Workload in the PCE UI
introduced with CLAS-mode, which maps directly to the native Kubernetes concept
of a workload resource (that is, Deployments, ReplicaSets, and the like).

Therefore, Kubernetes Workloads on the PCE should be labelled based on the cor-
responding workload annotations in Kubernetes, instead of on individual pod tem-
plate annotations in Kubernetes.

This labelling distinction prevents confusion, because Pods from a single Deployment
can have different annotations:

kubectl get pod azure-vote-front-6fd8b9b657-6pv8t -n voting-app -o

jsonpath='{.metadata.annotations}' | tr ',' '\n' | grep com.illumio

"com.illumio.app":"A-VotingApp"

"com.illumio.env":"E-Production"

"com.illumio.loc":"Azure"

kubectl get pod azure-vote-front-6fd8b9b657-npppz -n voting-app -o

jsonpath='{.metadata.annotations}' | tr ',' '\n' | grep com.illumio

"com.illumio.app":"A-VotingApp"

"com.illumio.env":"Development"

"com.illumio.loc":"Amazon"

"com.illumio.role":"R-Frontend"}

Migration

Workloads reporting supports both: Pod template annotations and workload annota-
tions. However, the priority is put on workload, if it contains at least one annotation
with a com.illumio. prefix.

In the following example, annotations are specified in metadata.annotations: and
spec.template.metadata.annotations:. Annotations specified in metadata.annotations: are
prioritized.

The resulting annotations mapped to labels are: app=A-VotingApp and env=E-Test (no
merging between the sets of annotations occurs).

Chapter 3 Configure Labels for Namespaces, Pods, and Services
Using Annotations

Illumio Core for Kubernetes and OpenShift 5.1 89

apiVersion: apps/v1
 kind: Deployment
 metadata:
 annotations:
 com.illumio.app: A-VotingApp
 com.illumio.env: E-Test
 name: test-deployment
 labels:
 app: nginx
 spec:
 replicas: 2
 selector:
 matchLabels:
 app: test-pod
 template:
 metadata:
 annotations:
 com.illumio.loc: Amazon
 com.illumio.env: test-env
 labels:
 app: test-pod
 spec:
 containers:
 - name: test-pod
 image: nginx:1.14.2
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80

Illumio Core for Kubernetes and OpenShift 5.1 90

Configure Security Policies for Con-
tainerized Environment

This chapter contains the following topics:

IP and FQDN Lists 90

Rules for Kubernetes or OpenShift Cluster 93

Rules for Containerized Applications 98

Rules and Traffic Considerations with CLAS 107

Rules for Persistent Storage 109

Local Policy Convergence Controller 111

Firewall Coexistence on Pods 116

Security policies are a set of rules that you can configure to secure your Kubernetes or
OpenShift environment. You can follow the guidelines and examples described in this
section to write rules for your Kubernetes or OpenShift clusters and containerized
applications, which you can then modify incrementally.

IP and FQDN Lists

FQDN Services for Kubernetes
There are some basic services that need to be defined as IP lists, such as docker.io or
the Kubernetes API server. These FQDNs will be used later in the ring-fence policy for
the Kubernetes cluster. The following FQDNs are commonly found to be

Chapter 4

Chapter 4 Configure Security Policies for Containerized Environment
IP and FQDN Lists

Illumio Core for Kubernetes and OpenShift 5.1 91

dependencies for Kubernetes and should be defined inside Illumio Core's IP list policy
objects:

 l docker.io

 l myregistry.example.com

The PCE FQDN is required for Kubelink for example, mypce.example.com.

IP Lists for Kubernetes
Additionally, the following subnets or IP addresses should be defined in the IP list
policy objects:

 l Kubernetes Pod Network: Locate subnet in master node’s /etc/kuber-
netes/kubeadm-config.yaml file (Ubuntu) under networking: > podSubnet: section,
for example, 10.200.0.0/16

 l Kubernetes Service Network: Locate subnet in master node’s /etc/kuber-
netes/kubeadm-config.yaml file (Ubuntu) under networking > serviceSubnet section,
for example, 10.100.0.0/16

The screenshot below displays IP lists created for Kubernetes Infrastructure depend-
encies.

Chapter 4 Configure Security Policies for Containerized Environment
IP and FQDN Lists

Illumio Core for Kubernetes and OpenShift 5.1 92

FQDN Services for OpenShift
There are some basic services that should be defined as IP lists such as docker.io or
the Kubernetes API server. These FQDNs will be used later in the ring fence policy for
the OpenShift cluster. The following FQDNs are commonly found to be dependencies
for OpenShift and should be defined in Illumio IP list policy objects:

 l docker.io

 l registry.access.redhat.com

 l access.redhat.com

 l subscription.rhsm.redhat.com

 l github.com

The PCE FQDN is required for Kubelink, for example, mypce.example.com.

IP Lists for OpenShift
Additionally, the following subnets or IP addresses should be defined in IP list policy
objects:

 l OpenShift Pod Network: Find subnet in master node's /etc/origin/master/master-
config.yaml file under networkConfig > clusterNetworkCIDR section, for example,
10.128.0.0/14

 l OpenShift Service Network: Find subnet in master node's /etc/-
origin/master/master-config.yaml file
under networkConfig > serviceNetworkCIDR section, for example, 172.30.0.0/16

The screenshot below displays IP lists created for OpenShift Infrastructure depend-
encies. It references the IP lists which automatically come with the Illumio Seg-
mentation Template.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Kubernetes or OpenShift Cluster

Illumio Core for Kubernetes and OpenShift 5.1 93

NOTE:
The IP lists mentioned above are for FQDNs and IP addresses that Illumio
has found to be necessary for basic Kubernetes or OpenShift deployments.
Each deployment varies and may have dependencies on additional FQDNs
or IP addresses that are not mentioned in this document.

If your Kubernetes or OpenShift infrastructure needs to communicate with
external services that are not mentioned here, then make sure you describe
those in the IP lists.

Rules for Kubernetes or OpenShift Cluster
This section assumes the following:

 l Kubernetes or OpenShift cluster nodes and infrastructure Pods are activated
and managed.

 l Labels have been assigned to each workload and container workload.

 l All cluster nodes and infrastructure Pods are in the same application group,
which means they have been assigned the same application, environment, and
location labels.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Kubernetes or OpenShift Cluster

Illumio Core for Kubernetes and OpenShift 5.1 94

Kubernetes
Create a ruleset for the Kubernetes cluster and control plane Pods. The labels
assigned to all of the Kubernetes nodes and control Pod workloads should fall within
the scope.

Add the following lines of policy to the ruleset.

Intra-Scope Rules

Providers Services Consumers Notes

docker.io (IP List)

myregistry.example.com
(IP List)

All Ser-
vices

All Work-
loads

Containerized environments
depend on various external
resources to perform basic oper-
ations such as pulling a docker
image. Illumio has determined
that the listed FQDNs are essen-
tial to Kubernetes deployments.
Each deployment varies and
may have dependencies on addi-
tional resources. If your con-
tainer infrastructure has
requirements for FQDNs not
mentioned in this document,
then you should include those
FQDNs in this policy line.

Illumio PCE (IP List) 8443
TCP

Kubelink Kubelink sends context about
the Kubernetes cluster to the
PCE over TCP 8443 port.

All Workloads 53 TCP

53 UDP

Kubernetes
Pod Net-
work (IP
List)

The Kubernetes cluster provides
internal DNS services to the
pods (using coreDNS in this
example). This policy enables
internal DNS resolution for these
tasks.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Kubernetes or OpenShift Cluster

Illumio Core for Kubernetes and OpenShift 5.1 95

Providers Services Consumers Notes

All Workloads

(Uses Virtual Services
and Workloads)

All Ser-
vices

All Work-
loads

Any communication across all
managed Kubernetes nodes or
managed infrastructure pods
which will be permitted by this
policy.

Kubernetes Pod Network
(IP List)

All Ser-
vices

All Work-
loads

Communications across initiated
by any workload which pass
through service front ends will
be allowed by this policy. It also
covers other IP addresses on
the Kubernetes pod network
which are not discovered by the
PCE. Critical for infrastructure
functions including but not lim-
ited to liveness probes and infra-
structure service front ends
(Kubernetes).

Extra-scope Rules

Providers Services Consumers Notes

All Work-
loads

6443
TCP

22 TCP

Any
0.0.0.0/0
(IP List)

Optional: Opens up ports which are purposed
for remote management. For example, TCP 22
to provide SSH services to Kubernetes admins.
TCP 6443 provides Kubernetes admins with
dashboard services. The Dashboard may vary
across Kubernetes deployments. The ports can
be modified to what is used in your envir-
onment and consuming IP list can be changed
to corporate subnets or jump servers.

Worker 80 TCP

443 TCP

Any
0.0.0.0/0
(IP List)

This policy assumes Ingress Controllers exist
on Worker nodes. If the ingress controllers
exist on other nodes, then modify the provider
to the host where the Ingress controllers
reside. This rule opens default front end ports
which are used to access containerized applic-
ations from external IP addresses.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Kubernetes or OpenShift Cluster

Illumio Core for Kubernetes and OpenShift 5.1 96

OpenShift
Create a ruleset for the OpenShift cluster and control plane Pods. The labels assigned
to all of the OpenShift nodes and control Pod workloads should fall within the scope.

Add the following lines of policy to the ruleset.

NOTE:
The IP lists referenced in this ruleset are commonly used public registries
(e.g., docker.io) for container environments. If you have confirmed that
your OpenShift environment does not depend on a public registry shown
below, then it is recommended that you remove the IP lists from the ruleset.

Intra-scope Rules

Providers Services Consumers Notes

docker.io (IP List)

registry.access.redhat.com (IP
List)

registry.webscaleone.info (IP
LIst)

access.redhat.com (IP List)

subscription.rhsm.redhat.com
(IP List)

All Ser-
vices

All Work-
loads

Containerized envir-
onments depend on various
external resources to per-
form basic operations such
as pulling a docker image.
Illumio has determined that
the listed FQDNs are essen-
tial to OpenShift deploy-
ments. Each deployment
varies and may have
dependencies on additional
resources. If your container
infrastructure has require-
ments for FQDNs not men-
tioned in this doc, then you
should include those
FQDNs in this policy line.

Illumio PCE (IP List) 8443 Kubelink Kubelink sends context

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Kubernetes or OpenShift Cluster

Illumio Core for Kubernetes and OpenShift 5.1 97

Providers Services Consumers Notes

TCP about the OpenShift cluster
to the PCE over TCP 8443
port.

All Workloads 53 TCP

53 UDP

OpenShift
Pod Net-
work (IP
List)

The OpenShift cluster in this
example uses DNSmasq
meaning each cluster node
listens on port 53 and
provides internal DNS ser-
vices to the pods. This
policy enables internal DNS
resolution for these tasks.

All Workloads

(Uses Virtual Services and
Workloads)

All Ser-
vices

All Work-
loads

Any communication across
all managed OpenShift
nodes or managed infra-
structure pods which will be
permitted by this policy.

OpenShift Pod Network (IP
List)

OpenShift Service Network (IP
List)

All Ser-
vices

All Work-
loads

Communications across ini-
tiated by any workload
which pass through service
front ends will be allowed
by this policy. It also covers
other IP addresses on the
OpenShift pod network
which are not discovered by
the PCE. Critical for infra-
structure functions includ-
ing but not limited to
liveness probes and infra-
structure service front ends
(Kubernetes).

Extra-Scope Rules

Providers Services Consumers Notes

All Work-
loads

8443
TCP

22 TCP

Any
0.0.0.0/0
(IP List)

Optional: Opens up ports which are purposed
for remote management. For example, TCP 22
to provide SSH services to OpenShift admins.
TCP 8443 provides OpenShift admins with

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 98

Providers Services Consumers Notes

webconsole services. Webconsole may vary
across OpenShift deployments. The ports can
be modified to server other remote man-
agement services and consuming IP list can be
changed to corporate subnets or jump servers.

Infra (Role) TCP 80

TCP 443

Any
0.0.0.0/0
(IP List)

This policy assumes the router exists only on
dedicated Infra nodes. If the router exists on
other nodes, then modify the provider to the
host where the router resides. This rule opens
default front end router ports which are used
to access containerized applications from
external IP addresses. As you start to open up
application pods to the outside world, you will
need to add the application's exposed port to
this policy's list of services. For example, you
spin up a httpd server and expose that server
on TCP 8080. The first step to allow access to
the httpd server from outside is to add TCP
8080 to this line of policy.

NOTE:
The IP lists referenced in the rulesets are commonly used public registries
(for example, docker.io) for container environments. If you have confirmed
that your Kubernetes or OpenShift environment does not depend on the
public registries mentioned above, then it is recommended that you
remove the IP lists from the ruleset.

Rules for Containerized Applications
This section covers different scenarios on writing rules for containerized applications.

Access Services from within the Cluster
For connections to a service from within the cluster, the Pods connect to a Service IP
and the connections get distributed to the Pods.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 99

Kubernetes

The rules you need to write are:

Example Ruleset

Scope

Application Environment Location

Risk Assessment Development Cloud

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

Database
(Virtual
Service
Role label
for data-
base ser-
vice) +
Use Virtual
Services
Only

Derived
from Pro-
vider Vir-
tual
Service

Web (Role
for Web
pods)

Once the database service gets discovered by
the PCE it becomes a virtual service object in
the PCE - not a container workload. The pro-
vider should be the role label of the virtual ser-
vice plus the "Use Virtual Service Only" option.
The Consumer in this example is the Web pod.
Use the Web Role label which describes the
pod. Leave the Providing Service empty. Once
the rule is saved, it will automatically populate
with Derived from Provider Virtual Service.

NOTE:
This does not allow Web pods to dir-
ectly access Database pods through
the pod IP. This only allows traffic
through the service.

OpenShift

The rules you need to write are:

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 100

Example Ruleset

Scope

Application Environment Location

Risk Assessment Production HQ

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

Database
(Virtual
Service
Role label
for data-
base ser-
vice) +
Use Virtual
Services
Only

Derived
from Pro-
vider Vir-
tual
Service

Web (Role
for Web
pods)

Once the database service gets discovered by
the PCE it becomes a virtual service object in
the PCE - not a container workload. The pro-
vider should be the role label of the virtual ser-
vice plus the "Use Virtual Service Only" option.
The Consumer in this example is the Web pod.
Use the Web Role label which describes the
pod. Leave the Providing Service empty. Once
the rule is saved, it will automatically populate
with Derived from Provider Virtual Service.

NOTE:
This does not allow Web pods to dir-
ectly access Database pods through
the pod IP. This only allows traffic
through the service.

Access Services from Outside the Cluster

Kubernetes

With Kubernetes, connections to a containerized application from the outside world
can be handled in many different ways. In this release, Illumio supports only con-
figurations which expose applications via the Kubernetes NGINX ingress controller
(HostNetwork type only). Exposing applications using HostPort are not supported.

In typical Kubernetes deployments, connections to a containerized application from
the outside world go through the ingress controllers, then the connection goes dir-
ectly from controllers to the pods - not the service. Example of scenario and rule cov-
erage are shown below.

Scenario:

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 101

 l The Kubernetes cluster and containerized applications are in the Development
environment

 l The containerized application is called RiskAssessment and each Pod within the
application listens on TCP 8080

 l The RiskAssessment application is exposed to the outside world via the ingress
controller. The controller listens on TCP port 80 for the RiskAssessment applic-
ation

 l In Illumio, the RiskAssessment workloads (Pods) provide to the controller on
TCP 8080. The controller provides TCP 80 to the outside world.

The rules you need to write are:

Example Ruleset 1

Scope

Application Environment Location

Risk Assessment Development Cloud

Intra-Scope Rule

Provider Providing Service Consumer

All Workloads All Services All Workloads

Extra-Scope Rule

Provider
Providing

Service
Consumer Notes

Risk Assess-
ment

TCP 8080 Worker The consumer should be the role label of the
nodes which nest the Ingress controllers.

Example Ruleset 2

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 102

The second ruleset opens the ingress controller to the external network. The rule and
ruleset below should have been created from the Rules for Kubernetes or OpenShift
Cluster section of this guide. You can modify the ruleset as needed.

Scope

Application Environment Location Notes

Kubernetes
Infrastructure

Development Cloud The scope of the ruleset should match
the Kubernetes infrastructure scope.

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

Worker
Node(s)

TCP 80 External
Network

This rule should exist from the Rules for Kuber-
netes or OpenShift Cluster section. The provider
should be the Kubernetes node(s) which contain
the ingress controller. The consumer can be an IP
List such as 0.0.0.0/0 (any), HQ, Corporate, or
employee subnet that requires connectivity into
the exposed container workloads.

OpenShift

Connections to a containerized application from the outside world go through the
OpenShift Router, then the connection goes directly from router to the Pods - not the
service. Example of scenario and rule coverage are shown below.

Scenario:

 l The OpenShift cluster and containerized applications are in the development
environment

 l The containerized application is called RiskAssessment and each Pod within the
application listens on TCP 8080

 l The RiskAssessment application is exposed to the outside world via the router.
The router listens on TCP port 80 for the RiskAssessment application

 l In Illumio, the RiskAssessment workloads (Pods) provide to the router on TCP
8080. The router provides TCP 80 to the outside world.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 103

The rules you need to write are:

Example Ruleset 1

Scope

Application Environment Location

Risk Assessment Production HQ

Intra-Scope Rule

Provider Providing Service Consumer

All Workloads All Services All Workloads

Extra-Scope Rule

Provider
Providing

Service
Consumer Notes

Risk Assess-
ment

TCP 8080 IST Infra
(Role)

Consumer refers to the Illumio Segmentation
Template. The consumer should be the role
label of the node(s) which nest the OpenShift
Router.

Example Ruleset 2

The following Ruleset is from the Segmentation Template and you can modify it as
needed.

Scope

Application Environment Location Notes

IST OpenShift
Infrastructure

IST Pro-
duction

IST HQ Ruleset is derived from Illumio Seg-
mentation Template. The scope should
match the OpenShift cluster.

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 104

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

IST Infra
(Role)

TCP 80 External
Network

This rule is included in Illumio Segmentation Tem-
plate. The provider should be the OpenShift
cluster node(s) which nest the router. The con-
sumer can be an IP list such as 0.0.0.0/0 (any),
HQ, Corporate, or employee subnet. The IST
default includes 0.0.0.0/0 (any) IP list.

Outbound Connections
The outbound connections are required to access repositories.

Kubernetes and OpenShift

The rules you need to write are:

Example Ruleset

Scope

Application Environment Location

Risk Assessment Development Cloud

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

docker.io
(IP List)

All Ser-
vices

Database
(Role for

Once the database service gets discovered by
the PCE it becomes a virtual service object in

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 105

Provider
Providing

Service
Consumer Notes

Postgres
Pods)

the PCE - not a container workload. The pro-
vider should be the role label of the virtual ser-
vice plus the "Use Virtual Service Only" option.
The Consumer in this example is the Web Pod.
Use the Web Role label which describes the
Pod. Leave the Providing Service empty. Once
the rule is saved, it will automatically populate
with Derived from Provider Virtual Service.

Liveness Probes
Containerized applications may require periodic health checks known as liveness
probes and readiness probes. Each application includes a health check YAML file
which contains liveness and readiness probe configurations. The health checks
between the container node and the local container workload may rely on TCP ports.
Illumio has included a consumer object called Container Host for this use case. The
Container Host object represents the container node or nodes which host the Pod(s).
The example below uses the Container Host object as a consumer for Liveness and
Readiness Probes.

NOTE:
The Container Host must always fall under an Extra-Scope rule.

The rules you need to write are:

Kubernetes and OpenShift

The rules you need to write are:

Example Ruleset

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Containerized Applications

Illumio Core for Kubernetes and OpenShift 5.1 106

Scope

Application Environment Location

Risk Assessment Development Cloud

Extra-Scope Rule

Provider
Providing

Service
Consumer Notes

All Work-
loads

TCP 9090 Container
Host (built-
in Illumio
object)

In this example, the Risk Assessment health
check configuration indicates that liveness
probe occurs on TCP 9090. Liveness probe
ports/protocols may vary across applications.
Container Host is an object built into the PCE
by default and represents any node which
hosts the respective Pod(s).

NodePort Support on Kubernetes and OpenShift
Kubernetes (and OpenShift) provide a mechanism to access cluster services from the
outside world, of type NodePort. This service exposes a port on all nodes in the cluster
on which traffic will be forwarded to any of the backing pods that match the service's
selector.

Scenario:

 l The Kubernetes cluster and containerized applications are in the Production
environment.

 l The containerized application is called RiskAssessment, and each Pod within the
application listens on TCP 8080.

 l The RiskAssessment application is exposed to the outside world via a FrontEnd
service with type NodePort.

 l The exact NodePort in use is not specified, but is automatically allocated by
Kubernetes.

 l There may be clients to the FrontEnd service within the cluster or outside the
cluster - in both cases, they are labeled as Client.

The rules you need to write are:

Example Ruleset 1: Internal and External Access to Service

Chapter 4 Configure Security Policies for Containerized Environment
Rules and Traffic Considerations with CLAS

Illumio Core for Kubernetes and OpenShift 5.1 107

Scope

Application Environment Location

Risk Assessment Production Cloud

Extra-Scope Rule

Provider
Providing

Service
Consumer Notes

FrontEnd (Virtual
Service Role label
for Risk Assess-
ment service) +
Use Virtual Ser-
vices Only

Derived
from Pro-
vider Virtual
Service

Client (Role
label for Web
pods and
external work-
loads)

Once the Risk Assessment service
gets discovered by the PCE it
becomes a virtual service object in
the PCE. The Provider here should
be the role label of the virtual ser-
vice plus the "Use Virtual Service
Only" option.

Rules and Traffic Considerations with CLAS
In Container Local Actor Store (CLAS) deployments, be sure to take into account the
following special traffic and policy rules considerations that differ from legacy non-
CLAS environments that are described in other sections of this chapter.

Mandatory Rules
The CLAS architecture requires mandatory infrastructure rules to be in place for the
cluster to work properly. Do not upgrade to the CLAS mode, or move the cluster to
Full Enforcement until the following infrastructure rules are configured:

 l Node -> Service CIDR IP list (9000/TCP)

 l Any (0.0.0.0/0 and ::0) -> Node (2379-2380/TCP, 2379-2380/UDP)

ClusterIP Rules
In the CLAS environment, ClusterIP ports are now represented as Kubernetes Work-
loads when viewing traffic, and not as Virtual Services, as before.

If you want to migrate from a legacy (non-CLAS) to a CLAS environment, you must
make sure that all rules that apply to ClusterIP Services are changed to "Use Work-
loads" at a specific time within the process of upgrading to CLAS. For complete
details, see Upgrade to CLAS Architecture.

Chapter 4 Configure Security Policies for Containerized Environment
Rules and Traffic Considerations with CLAS

Illumio Core for Kubernetes and OpenShift 5.1 108

Because Services are now Kubernetes Workloads, the "All Workloads" flag in a rule
will include all Services. Do not use "All Workloads" as a Destination in a rule. Use a
more specific label instead that targets the Service.

All rules that include a label of at least one ClusterIP service will have specified ports
internally replaced. However - this is not reflected in PCE UI, where the rule still dis-
plays ports.

NodePort and LoadBalancer services remain Virtual Services in the PCE. The ClusterIP
part of NodePort and LoadBalancer services also exist as a Kubernetes Workload and
are linked with the Virtual Service. in the PCE. The ClusterIP part of NodePort and
LoadBalancer services also exist as a Kubernetes Workload and are linked with the Vir-
tual Service.

General Traffic View Changes
The following is a summary of general changes to traffic views in a CLAS-enabled
cluster:

 l Kubernetes workloads (for example, Deployments) are now shown in the UI as
Kubernetes Workloads, and not as Container Workloads. Container Workloads
(Pods) are still shown in non-CLAS clusters.

 l ClusterIP Virtual Services are now shown as Kubernetes Workloads.

 l NodePort and LoadBalancer services remain Virtual Services in the PCE.

 l Traffic from other Virtual Services to Kubernetes Workloads is not shown.

 l Traffic between Kubernetes Workloads within a cluster is shown.

CLAS Traffic Limitations
Consider the following differences and limitations in these scenarios when viewing
traffic and writing rules in a CLAS environment:

 l Pod to Host

When a Pod is on a different Node than target Node, additional traffic is shown
occurring from the Pod's Node to the target Node. This traffic cannot be select-
ively hidden with filters because it behaves the same way as traffic from host to
host that should not be hidden. (This behavior occurs only when Calico is used
as the CNI.)

 l Pod to ClusterIP

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Persistent Storage

Illumio Core for Kubernetes and OpenShift 5.1 109

Additional direct traffic occurs from a source Pod to a source Target, regardless
whether it is destined for the same node or a different target node.

 l Managed Workload to NodePort

Additional traffic is shown for a Client's direct access to a target Pod, and from a
Used Node to a target Pod.

Also, crucial traffic destined for a NodePort is actually showing the Node with
the NodePort's port.

 l Unmanaged Workload (or Internet) to NodePort

Additional traffic is shown for a Client's direct access to a target Pod, and from a
Used Node to a target Pod.

Also, in the traffic from the Client to the NodePort virtual service, we are missing
the crucial traffic with NodePort's port.

 l Draft Traffic to Virtual Services

Traffic in Draft mode where the destination is a Virtual Service is marked as
Potentially Blocked.

Rules for Persistent Storage
This section only applies to deployments which require communication with external
storage nodes over NFS, iSCSI, and others for persistent storage. If the cluster or Pods
have external storage dependencies, then you need a policy to allow outbound com-
munications to the storage node. The storage node can be represented as an unman-
aged workload or IP list.

The following is an example of outbound policy to a NFS node, which is represented
by an IP list.

Kubernetes
The following is an example of an outbound policy to an NFS node, which is rep-
resented by an IP list:

Example Ruleset 1

Scope

Application Environment Location Notes

Kubernetes Infrastructure Development Cloud Kubernetes cluster

Chapter 4 Configure Security Policies for Containerized Environment
Rules for Persistent Storage

Illumio Core for Kubernetes and OpenShift 5.1 110

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

NFS Stor-
age (IP
List)

TCP 2049 All Work-
loads

All Kubernetes nodes and infrastructure Pods
can communicate outbound to NFS over the
NFS TCP port.

Example Ruleset 2

Scope

Application Environment Location Notes

ERP Development Cloud From httpd example

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

NFS Storage
(IP List)

TCP 2049 All Work-
loads

All Pods can talk outbound to NFS over
the NFS TCP port.

OpenShift
The following is an example of an outbound policy to an NFS node, which is rep-
resented by an IP list:

Example Ruleset 1

Scope

Application Environment Location Notes

OpenShift Infrastructure Development Cloud OpenShift cluster

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

NFS Stor-
age (IP
List)

TCP 2049 All Work-
loads

All OpenShift nodes and infrastructure Pods
can communicate outbound to NFS over the
NFS TCP port.

Example Ruleset 2

Scope

Application Environment Location Notes

ERP Development Cloud From httpd example

Chapter 4 Configure Security Policies for Containerized Environment
Local Policy Convergence Controller

Illumio Core for Kubernetes and OpenShift 5.1 111

Intra-Scope Rule

Provider
Providing

Service
Consumer Notes

NFS Storage
(IP List)

TCP 2049 All Work-
loads

All Pods can talk outbound to NFS over
the NFS TCP port.

Local Policy Convergence Controller
The local policy convergence controller provides a deterministic way of setting the
readiness state of pods in your cluster after local policy has converged. By controlling
the readiness state of pods, you can prevent them from receiving and sending traffic
through Kubernetes until they are ready. Using a controller ensures that the network
and security infrastructure is ready for a multi-microservice application.

In this release, the Kubernetes Custom Pod Conditions feature introduced in v1.14 is
available for containerized VENs.

About the Controller Behavior
By default, the readiness gate is not specified on a pod spec and the C-VEN does not
affect the readiness state of the pod regardless of annotations or Illumio managed
state.

When the Illumio readiness gate is specified on a pod spec, the PCE completes the fol-
lowing actions when a new pod is created:

 1. Sends the C-VEN policy for the new pod P.

 2. When pod P is managed, the C-VEN applies local policy for the new pod P.

 3. The C-VEN waits for a timer to expire to allow peers to apply policy on their end
(such as, updating the new pod P IP address).

By default, the timer uses the following values:

 o If the pod is managed by Illumio, the timer is set to 15 seconds.

 o If the pod is not managed by Illumio, the timer is set to 0 seconds.

TIP:
To configure a custom value for the timer duration, see Timer
Customization.

 4. The C-VEN sets the readiness gate pod condition to “True.”

The pod is now considered “Ready” by Kubernetes.

Chapter 4 Configure Security Policies for Containerized Environment
Local Policy Convergence Controller

Illumio Core for Kubernetes and OpenShift 5.1 112

Configure the Illumio Readiness Gate
To use a local policy convergence controller, specify the Illumio readiness gate under
readinessGates.conditionType in the pod spec YAML.

See the following example pod spec YAML file:

apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: my-deploy
 spec:
 selector:
 matchLabels:
 app: my-pod
 replicas: 2
 template:
 metadata:
 labels:
 app: my-pod
 spec:
 readinessGates: # <----- declare readiness
gates
 - conditionType: "com.illumio.policy-ready" # <----- Illumio policy
convergence readiness gate
 containers:
 - name: my-pod-web
 image: nginx
 ports:
 - containerPort: 80

Timer Customization
You can customize the timer cluster-wide or pre-pod.

NOTE:
When configuring a custom timer by using the DaemonSet environment
variable or an annotation, you are limited to specifying 0-300 seconds.

Chapter 4 Configure Security Policies for Containerized Environment
Local Policy Convergence Controller

Illumio Core for Kubernetes and OpenShift 5.1 113

Cluster Wide Timer Customization

To customize the timer duration on a cluster-wide basis, set the readiness gate timer
variable in the C-VEN DaemonSet YAML.

See the following YAML file:

...
 containers:
 - name: illumio-ven
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_server
 - name: ILO_CODE
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_code
 - name: ILO_K8S_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: ILO_K8S_READINESS_TIMER # <--- custom readiness gate timer
across the cluster
 value: "20" # <--- timer value
 ...

Pre-pod Timer Customization

To customize the timer duration for specific pods, set the Illumio readiness gate timer
annotation on the pod spec.

See the following example deployment:

apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: my-deploy

Chapter 4 Configure Security Policies for Containerized Environment
Local Policy Convergence Controller

Illumio Core for Kubernetes and OpenShift 5.1 114

 spec:
 selector:
 matchLabels:
 app: my-pod
 replicas: 2
 template:
 metadata:
 labels:
 app: my-pod
 annotations:
 com.illumio.readiness-gate-timer: "20" # <----- custom readiness
gate timer for all pods in this deployment
 spec:
 readinessGates:
 - conditionType: "com.illumio.policy-ready"
 containers:
 - name: my-pod-web
 image: nginx
 ports:
 - containerPort: 80

Track the State of the Readiness Gate
You can track the state of the readiness gate by running either of the following com-
mands:

 l kubectl get pod -o wide

 l kubectl get ep -o wide

Example: State of the Readiness Gate

This example shows a cluster with Kubelink and the C-VEN deployed and running.
When you initially deploy or scaled up the Illumio Readiness Gate, you see the fol-
lowing values:

NOTE:
The state of gate readiness appears in the "READINESS GATES" column.

Chapter 4 Configure Security Policies for Containerized Environment
Local Policy Convergence Controller

Illumio Core for Kubernetes and OpenShift 5.1 115

$ kubectl get pod,ep -o wide
 NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
 pod/my-deploy-855dfbf94f-gwz7c 1/1 Running 1 4d20h 172.17.0.7
ubuntu20 <none> 0/1
 pod/my-deploy-855dfbf94f-p7czp 1/1 Running 1 4d20h 172.17.0.6
ubuntu20 <none> 0/1

 NAME ENDPOINTS AGE
 endpoints/kubernetes 10.0.2.15:8443 19d
 endpoints/my-service 4d22h

In this example, the readiness gates are marked as 0/1 for both pods and my-service
does not have any available endpoints. After the VEN has processed the policy for the
new pods and the timer expires, it sets the readiness gate to “True” for each pod and
you see the following output:

$ kubectl get pod,ep -o wide
 NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
 pod/my-deploy-855dfbf94f-gwz7c 1/1 Running 1 4d20h 172.17.0.7
ubuntu20 <none> 1/1
 pod/my-deploy-855dfbf94f-p7czp 1/1 Running 1 4d20h 172.17.0.6
ubuntu20 <none> 1/1

 NAME ENDPOINTS AGE
 endpoints/kubernetes 10.0.2.15:8443 19d
 endpoints/my-service 172.17.0.6:9376,172.17.0.7:9376 4d22h

To view greater detail about the pod conditions, run the command kubectl get pod
<pod name> -o yaml:

$ kubectl get pod my-deploy-855dfbf94f-gwz7c -o yaml
 ...
 status:
 conditions:
 - lastProbeTime: null // <--
 lastTransitionTime: "2021-05-18T20:26:26Z" // <--

Chapter 4 Configure Security Policies for Containerized Environment
Firewall Coexistence on Pods

Illumio Core for Kubernetes and OpenShift 5.1 116

 message: Pod Policy Ready // <-- this pod condition is set
by VEN
 reason: PolicyReady // <--
 status: "True" // <--
 type: illumio.com/policy-ready // <--
 - lastProbeTime: null
 lastTransitionTime: "2021-05-18T20:25:51Z"
 status: "True"
 type: Initialized
 - lastProbeTime: null
 lastTransitionTime: "2021-05-19T19:56:24Z"
 status: "True"
 type: Ready // <-- this is only set to True
after all readiness gates are set to True
 - lastProbeTime: null
 lastTransitionTime: "2021-05-19T19:56:24Z"
 status: "True"
 type: ContainersReady
 - lastProbeTime: null
 lastTransitionTime: "2021-05-18T20:25:51Z"
 status: "True"
 type: PodScheduled
 ...

Firewall Coexistence on Pods
The Illumio C-VEN configures iptables on each host and each Pod (in a managed
namespace). By default, Illumio Core coexistence mode is set to Exclusive meaning
the C-VEN will take full control of iptables and flush any rules or chains that are not
created by Illumio Core. In containerized environments, this may affect com-
munications to/from container components (Docker, Kubernetes, Illumio Kubelink).
Therefore, Illumio Core must allow firewall coexistence in order to achieve non-dis-
ruptive installation and deployment.

NOTE:
For Workloads part of a Container cluster (Kubernetes or OpenShift
nodes), firewall coexistence is enabled by default if Kubelink was deployed
and is "In Sync" with the PCE (prior to the C-VEN installation).

Chapter 4 Configure Security Policies for Containerized Environment
Firewall Coexistence on Pods

Illumio Core for Kubernetes and OpenShift 5.1 117

In some cases, there may be some Pods that implement iptables rules inside the Pod
namespace for the containerized application to work (VPN, NAT, and others). In order
to support such requirements from containerized applications, you should enable fire-
wall coexistence for these Pods.

In order to allow firewall coexistence, you must set a scope of Illumio labels in the fire-
wall coexistence configuration. Once you provision a firewall coexistence scope, the
PCE will enable firewall coexistence configuration on all the Pods whose labels fall
within the scope.

NOTE:
Labels assigned to Kubernetes cluster nodes must fall within the firewall
coexistence scope. This is not a requirement for the labels assigned to con-
tainer workloads.

To configure firewall coexistence:

 1. In the PCE UI, navigate to Settings > Security.

 2. On the Security page, select the Manage Firewall Coexistence tab.

 3. Click Edit.

 4. In the edit wizard, click Add. The Add Firewall Coexistence Labels and Policy
State wizard will pop-up.

 5. Select a scope of Illumio labels. The scope must include the labels you intend to
use for your Kubernetes cluster nodes.

 a. Select All for Policy State.

 b. Illumio Core is Primary Firewall - Select your preference.

 i. Yes = (Recommended) Illumio iptable chains will be at the top of ipt-
ables at all times. Non-Illumio iptable chains can coexist, but will fol-
low after Illumio chains.

 ii. No = (Not Recommended) Non-Illumio iptable chains may coexist
and can be placed before Illumio chains.

NOTE:
For deployments using Calico, Illumio recommends setting the
Calico ChainInsertMode to Append and set Illumio Core as
Primary Firewall value to Yes. If the Kubernetes cluster requires
Calico Insert mode, then set Illumio Core as Primary
Firewall value to No.

Chapter 4 Configure Security Policies for Containerized Environment
Firewall Coexistence on Pods

Illumio Core for Kubernetes and OpenShift 5.1 118

 c. Click OK.

 6. Click Save.

 7. Provision the changes.

Be sure to provision the saved changes or else firewall coexistence will not take effect.

The following example is of a firewall coexistence scope for a Kubernetes or
OpenShift cluster which has the following labels:

 l Role: All

 l Application: Kube-System

 l Environment: Development

 l Location: Cloud

The firewall coexistence scope in the example uses the 'All Roles' objects to cover
future Pods spun up in the kube-system namespace that may require additional ipt-
ables rules to forward packets.

Illumio Core for Kubernetes and OpenShift 5.1 119

Upgrade and Uninstallation

This chapter contains the following topics:

Migrate from Previous C-VEN Versions (21.5.15 or Earlier) 120

Upgrade and Uninstall Helm Chart Deployments 122

Upgrade and Uninstall Non-Helm Chart Deployments 124

Upgrade to CLAS Architecture 127

Follow the steps and sequence described in this section to upgrade or uninstall Illumio
Core for Kubernetes components. This section also describes the procedure for
migrating from a deployment of C-VEN version 21.5.15 or earlier (which did not use
Helm Charts) to a current Helm Chart deployment.

This chapter also describes how to upgrade a non-CLAS deployment to a CLAS-
enabled one (which is the default mode starting in version 5.0.0 of Illumio Core for
Kubernetes).

IMPORTANT:
Use the proper upgrade and uninstallation procedures according to the
method that was first used to deploy the product. For deployments made
with a Helm Chart (typically with Illumio Core for Kubernetes 3.0.0 or later),
follow the steps in Upgrade and Uninstall Helm Chart Deployments. For
deployments made without using a Helm Chart (for installations of C-VEN
21.5.15 or earlier), follow the steps in Upgrade and Uninstall Non-Helm Chart
Deployments

Chapter 5

Chapter 5 Upgrade and Uninstallation
Migrate from Previous C-VEN Versions (21.5.15 or Earlier)

Illumio Core for Kubernetes and OpenShift 5.1 120

Migrate from Previous C-VEN Versions (21.5.15 or
Earlier)
This section describes the steps to migrate a manually-deployed Illumio installation to
a Helm-managed deployment. Manually-deployed (or, non-Helm deployments) were
used to configure and deploy C-VEN versions 21.5.15 and earlier, and Kubelink versions
earlier than 3.0.

To upgrade an existing Helm installation to a newer version, follow standard Helm
practice with helm upgrade command.

Follow these general steps to migrate from a manually-deployed Illumio Core for
Kubernetes to a Helm Chart deployment:

 1. Annotate and label resources.

 2. Delete C-VEN DaemonSet.

 3. Install Helm and the Helm Chart.

Annotate and Label Resources
From Helm version 3.0.0 on, Helm supports adopting already-deployed resources
with the correct name, annotations, and labels.

Required annotations and labels are:

annotations:
 meta.helm.sh/release-name: illumio
 meta.helm.sh/release-namespace: illumio-system
 labels:
 app.kubernetes.io/managed-by: Helm

To annotate and label all Illumio resources, use the commands below (provided the
names of resources match your deployment). Note the --overwrite flag which
replaces any existing ownership annotations that might be already assigned.

kubectl -n illumio-system annotate secret illumio-ven-config
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate secret illumio-ven-config
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label secret illumio-ven-config

Chapter 5 Upgrade and Uninstallation
Migrate from Previous C-VEN Versions (21.5.15 or Earlier)

Illumio Core for Kubernetes and OpenShift 5.1 121

app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate secret illumio-kubelink-config
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate secret illumio-kubelink-config
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label secret illumio-kubelink-config
app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate serviceaccount illumio-ven
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate serviceaccount illumio-ven
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label serviceaccount illumio-ven
app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate clusterrole illumio-kubelink
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate clusterrole illumio-kubelink
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label clusterrole illumio-kubelink
app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate clusterrolebinding illumio-ven
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate clusterrolebinding illumio-ven
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label clusterrolebinding illumio-ven
app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate clusterrole illumio-ven
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate clusterrole illumio-ven
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label clusterrole illumio-ven
app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate serviceaccount illumio-kubelink
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate serviceaccount illumio-kubelink
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label serviceaccount illumio-kubelink
app.kubernetes.io/managed-by=Helm --overwrite

Chapter 5 Upgrade and Uninstallation
Upgrade and Uninstall Helm Chart Deployments

Illumio Core for Kubernetes and OpenShift 5.1 122

 kubectl -n illumio-system annotate deployment illumio-kubelink
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate deployment illumio-kubelink
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label deployment illumio-kubelink
app.kubernetes.io/managed-by=Helm --overwrite
 kubectl -n illumio-system annotate clusterrolebinding illumio-kubelink
meta.helm.sh/release-name=illumio --overwrite
 kubectl -n illumio-system annotate clusterrolebinding illumio-kubelink
meta.helm.sh/release-namespace=illumio-system --overwrite
 kubectl -n illumio-system label clusterrolebinding illumio-kubelink
app.kubernetes.io/managed-by=Helm --overwrite

The output should look similar to this:

...
 clusterrolebinding.rbac.authorization.k8s.io/illumio-kubelink annotated
 clusterrolebinding.rbac.authorization.k8s.io/illumio-kubelink annotated
 clusterrolebinding.rbac.authorization.k8s.io/illumio-kubelink labeled

Delete C-VEN DaemonSet
The next step is removing the C-VEN DaemonSet. Save any custom labels and val-
idations included in the DaemonSet and reapply them later.

kubectl delete daemonset illumio-ven -n illumio-system

Install Helm
The last remaining step is installing Helm and the Helm Chart for Illumio Core for
Kubernetes. Follow the steps in Deploy with Helm Chart. Filling in the fields in illu-
mio-values.yaml is still mandatory.

Upgrade and Uninstall Helm Chart Deployments
Deployments of Illumio Core for Kubernetes 3.0.0 or later are performed with Helm
Charts. Upgrades and uninstallations are also performed with Helm commands.

Chapter 5 Upgrade and Uninstallation
Upgrade and Uninstall Helm Chart Deployments

Illumio Core for Kubernetes and OpenShift 5.1 123

Upgrade Helm Chart Deployments
To upgrade an existing installation to a newer version after it had been initially
deployed with a Helm Chart, follow standard Helm practice with the helm upgrade
command.

For example, if you install the Helm Chart for Core for Kubernetes 4.2.0 initially with
this command:

helm install illumio -f values.yaml oci://quay.io/illumio/illumio --version 4.2.0
--namespace illumio-system

Then use the following command to upgrade to version 4.3.0:

helm upgrade illumio -f values.yaml oci://quay.io/illumio/illumio --version 4.3.0

Use the same values.yaml file for the upgrade that was used for the original install
command.

IMPORTANT:
Be sure to explicitly specify the version to upgrade to with the --version
<ver#> option (for example, --version 4.3.0), after confirming that the
product version you want to install is supported with your PCE version.
Verify which PCE versions support the Illumio Core for Kubernetes version
you want to deploy at the Kubernetes Operator OS Support and Depend-
encies page on the Illumio Support Portal.

Uninstall Helm Chart Deployments
To completely uninstall an existing installation that had been initially deployed with a
Helm Chart:

$ helm uninstall illumio --namespace illumio-system

 $ kubectl delete namespace illumio-system

The uninstallation process also unpairs the C-VENs from the PCE.

Uninstalling the Helm Chart release takes around two minutes to complete.

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Chapter 5 Upgrade and Uninstallation
Upgrade and Uninstall Non-Helm Chart Deployments

Illumio Core for Kubernetes and OpenShift 5.1 124

Upgrade and Uninstall Non-Helm Chart Deployments
This section describes how deployments that were not installed with Helm can be
upgraded or uninstalled.

Upgrade Illumio Components
Illumio Core for Kubernetes and OpenShift is a flexible and modular solution that can
be upgraded piece by piece.

For minor upgrades, Kubelink can be upgraded independently from the C-VEN and
vice versa unless explicitly mentioned in the release notes.

For major upgrades, including PCE, Kubelink, and C-VEN, Illumio recommends the fol-
lowing process:

 l Upgrade the PCE to the new desired version.

 l Review the compatibility matrix between PCE, Kubelink, and C-VEN on the Illu-
mio support website.

 l Upgrade Kubelink.

 l Upgrade C-VEN.

Upgrade Kubelink

The supported process to upgrade Kubelink is as follows:

 1. Upload the new image to your private container registry.

 2. Change the manifest file to point to the latest Kubelink image in the registry. You
do not need to change the previously created secret for Kubelink.

 3. Apply this new manifest file to the cluster. illumio-kubelink follows the default
update behavior of Kubernetes. For more information, see Kubernetes Docu-
mentation.

You can verify that the upgrade was successful in the PCE UI on the Container
Clusters > Summary page and checking for the new Kubelink version.

Upgrade C-VEN

The supported process to upgrade C-VENs is as follows:

 1. Upload the new image to your private container registry.

 2. Change the manifest file to point to the latest C-VEN image in the registry. You
do not need to change the previously created secret for C-VEN.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment

Chapter 5 Upgrade and Uninstallation
Upgrade and Uninstall Non-Helm Chart Deployments

Illumio Core for Kubernetes and OpenShift 5.1 125

 3. Apply this new manifest file to the cluster. illumio-ven daemonset follows the
default rolling update behavior of Kubernetes. For more information, see Kuber-
netes Documentation.

You can verify that the upgrade was successful in the PCE UI on the Container
Clusters > Workloads page and clicking on any workload and checking for the new C-
VEN version.

Uninstall Illumio from Your Cluster
To uninstall the Illumio components, you need to contact Illumio Professional Services
to unpair the C-VENs and then delete the Illumio resources from your cluster.

Unpair C-VENs

IMPORTANT:
Contact Illumio Professional Services to unpair the C-VENs in your Kuber-
netes or OpenShift clusters.

Deleting C-VENs or DaemonSet will not properly unpair them from the PCE and can
cause the following issues:

 l Workloads will go offline in the PCE UI after 5 minutes (defined by the default
Offline Timers configured in the PCE).

 l Workloads will be left in the PCE UI as offline with the button to unpair them
grayed out (this action is not supported by Illumio).

 l Firewall rules configured on the Host and Pods namespaces will remain
untouched and active.

The current way to properly delete these workloads created in the PCE UI by C-VENs
is by deleting the entire cluster in the PCE UI.

IMPORTANT:
Unpairing an individual C-VEN is not supported. It has to be done at the
cluster level (through the DaemonSet), because the cluster is considered as
a single entity from a security point of view.

If a node unjoins the cluster for any reason or due to the kubectl delete node <node_
name> command, the PCE automatically unpairs the C-VEN and deletes the workload
and Container workloads associated with the C-VEN that was running on the deleted
node.

https://kubernetes.io/docs/tasks/manage-daemon/update-daemon-set/
https://kubernetes.io/docs/tasks/manage-daemon/update-daemon-set/

Chapter 5 Upgrade and Uninstallation
Upgrade and Uninstall Non-Helm Chart Deployments

Illumio Core for Kubernetes and OpenShift 5.1 126

Delete Illumio Resources

To delete the existing Illumio resources created in your Kubernetes or OpenShift
cluster, follow these steps:

Delete C-VEN Resources

 1. Contact Illumio Professional Services to unpair the C-VENs and clean up existing
iptables rules created by Illumio.

 2. Check the Workloads and Container Workloads tabs under Infrastructure > Con-
tainer Clusters > YourClusterName and validate that your nodes and Pods are no
longer visible.

 3. Delete the resources created during the C-VEN installation by using the fol-
lowing command:

kubectl delete -f illumio-ven-kubernetes.yml
 kubectl delete -f illumio-ven-secret.yml

oc delete -f illumio-ven-openshift.yml
 oc delete -f illumio-ven-secret.yml

Delete Kubelink Resources

 1. Delete the resources created during the Kubelink installation.

 2. Delete Kubelink resources from Kubernetes:

kubectl delete -f illumio-kubelink-kubernetes.yml
 kubectl delete -f illumio-kubelink-secret.yml

 3. Delete Kubelink resources from OpenShift:

oc delete -f illumio-kubelink-openshift.yml
 oc delete -f illumio-kubelink-secret.yml

 4. Check the Summary tab under Infrastructure > Container Clusters > YourCluster-
Name and validate that your cluster is "Out of Sync". It takes approximately 10
minutes for the cluster Status to change from "In Sync" to "Out-of-Sync".

Chapter 5 Upgrade and Uninstallation
Upgrade to CLAS Architecture

Illumio Core for Kubernetes and OpenShift 5.1 127

 5. Finally, delete the container cluster from the PCE UI and verify that there are no
resources left in your cluster such as, ConfigMap, Secrets, and others.

Delete Illumio Namespace

 l To delete the Illumio namespace in Kubernetes, use the following command:

kubectl delete ns illumio-system

 l To delete the Illumio namespace in OpenShift, use the following command:

oc delete project illumio-system

Upgrade to CLAS Architecture
A Cluster Local Actor Store (CLAS) mode is introduced into the architecture of Illumio
Core for Kubernetes 5.0.0.

IMPORTANT:
To use CLAS, your PCE must be upgraded to Core 23.5.10 or later.

The CLAS architecture brings two major changes to the typical Illumio Core policy
model:

 l The definition of a workload is fundamentally changed. In a legacy, non-CLAS
environment, a container workload is a Pod. In CLAS, a workload is now the
Kubernetes Workload resource (such as Deployment, StatefulSet, ReplicaSet,
DaemonSet, and so on), which typically includes multiple Pods that can change
in amount during the lifetime of the workload. As such, CLAS workloads are
called Kubernetes Workloads, to distinguish them from non-CLAS Container
Workloads.

Chapter 5 Upgrade and Uninstallation
Upgrade to CLAS Architecture

Illumio Core for Kubernetes and OpenShift 5.1 128

 l ClusterIP services change from Virtual Services to workloads. NodePort and
LoadBalancer services remain as Virtual Services in the PCE. The ClusterIP part
of a NodePort or LoadBalancer service also exists as a Kubernetes Workload
and is linked with the Virtual Service.

Illumio recommends writing a policy using labels. In addition to being impractical, it is
not even possible to write a policy for individual Pods. It was (and still is possible) to
use Virtual Services in the policy explicitly in rule writing, but Illumio still recommends
using labels.

IMPORTANT:
The CLAS architecture is supported only in Illumio Core for Kubernetes ver-
sions 5.0.0 and later

Pre-upgrade Policy Check
All policies for your Kubernetes environments must be expressed using labels. In the
rare case that policies are using Virtual Service objects, those policies must be
changed to label-based policies.

ClusterIP Services as Kubernetes Workloads

ClusterIP services are modeled as workloads in the CLAS environment. If you had a
policy written with "Virtual Services Only," that policy will not apply to Kubernetes
Workloads (including ClusterIP Services) after the upgrade to CLAS. All rules that
apply to ClusterIP Services must be changed to "Use Workloads" before upgrading to
CLAS, which needs Destination Services to be specified. This setting also causes ports
to be populated from Virtual Services to the rule. So at least one port number must be
filled in when writing this rule.

To keep the old functionality of PCE synchronizing the ports of ClusterIP Service, the
CLAS now performs this operation. When the rule arrives at Kubelink/CLAS, ports will
be replaced by the current ports of the ClusterIP Services. The port replacement
includes all ports from the Service. If the Service has two ports, it is not possible to
include one and not include the other.

Because Services are now Kubernetes Workloads, the "All Workloads" flag in a rule
will include all Services. Do not use "All Workloads" as a Destination in a rule. Use a
more specific label instead that targets the Service.

All rules that include a label of at least one ClusterIP service will have specified ports
internally replaced. However - this is not reflected in PCE UI, where the rule still dis-
plays ports.

Chapter 5 Upgrade and Uninstallation
Upgrade to CLAS Architecture

Illumio Core for Kubernetes and OpenShift 5.1 129

Upgrade Strategy
Illumio Core for Kubernetes 5.x is backward-compatible and supports both CLAS and
legacy non-CLAS mode operation.

This is controlled by the clusterMode parameter specified in the Helm Chart installation
yaml file. The default value is legacy, meaning that after the upgrade, the software
operates in the legacy, non-CLAS mode.

The PCE supporting Illumio Core for Kubernetes 5.0.0 and later (PCE version
23.5.0+A1 and later) also supports both CLAS and non-CLAS modes of operation. Illu-
mio recommends that after the software upgrade, the migration to CLAS is performed
one cluster at a time.

The CLAS implementation uses the configuration parameter clusterMode set to clas or
legacy to turn on (or off) CLAS mode in the cluster, respectively, when installing.
When upgrading an existing non-CLAS cluster to CLAS, set clusterMode, to
migrateLegacyToClas. When reverting (or downgrading) CLAS to non-CLAS, set cluster-
Mode to migrateClasToLegacy.

Upgrade Steps (on Each Kubernetes Cluster)
Be sure to perform all steps in this procedure on each existing Kubernetes cluster that
you want to upgrade to CLAS mode.

 1. Prepare the values.yaml file with all required parameters. Refer to Deploy with
Helm Chart.

 2. Upgrade Illumio Core for Kubernetes to version 5.1.0 or later. Refer to Upgrade
and Uninstall Helm Chart Deployments.

 3. Verify the upgrade was successful.

 4. Perform a pre-upgrade policy check (see Pre-upgrade Policy Check above).

 5. Set the "illumio-system" namespace into Visibility Only enforcement mode.

 6. Consider setting all cluster nodes into Visibility Only enforcement mode. This
step compromises security and will open traffic to/from your protected applic-
ations. On the other hand, any policy errors will not result in an application out-
age.

 7. Migrate the cluster to CLAS mode:

 a. Add clusterMode: migrateLegacyToClas parameter-value pair to your val-
ues.yaml.

Chapter 5 Upgrade and Uninstallation
Upgrade to CLAS Architecture

Illumio Core for Kubernetes and OpenShift 5.1 130

 b. Perform helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

IMPORTANT:
Be sure to explicitly specify the version to upgrade to with the --
version <ver#> option (for example, --version 5.1.0), after con-
firming that the product version you want to upgrade to is sup-
ported with your PCE version. Verify which PCE versions
support the Illumio Core for Kubernetes version you want to
deploy at the Kubernetes Operator OS Support and Depend-
encies page on the Illumio Support Portal.

 8. Refresh the Container Cluster page so that the Kubernetes Workloads tab now
appears along with Container Workloads tab

 9. Check that all C-VEN pods and the Kubelink pod restarted.

 10. This cluster is now running in migration mode, Container Workloads are still
present, and new Kubernetes Workloads (CLAS-enabled) are populated.

 11. Check if policy sync status of all Kubernetes Workloads and Peer Workloads are
"Active." Some Container Workloads might be in Active state, while others in
Syncing state -- this is expected. Check if traffic still works. If something goes
wrong, revert the cluster to non-CLAS mode with the following procedure, oth-
erwise go to the next Step:

 a. Specify clusterMode: migrateClasToLegacy parameter-value pair in your val-
ues.yaml.

 b. Perform helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

 c. Refresh the Container Cluster page so the Container Workloads tab
appears along with the Kubernetes Workloads tab

 d. Wait until Container Workloads and peers are Active, and traffic is working
as expected.

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Chapter 5 Upgrade and Uninstallation
Upgrade to CLAS Architecture

Illumio Core for Kubernetes and OpenShift 5.1 131

 e. Change the clusterMode parameter to legacy in values.yaml -- or delete the
variable (because the default parameter value is legacy).

 f. Perform the helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

 g. Verify that Kubernetes Workloads were deleted, that Container Workloads
are in a Synced state, and that traffic is working as expected.

 12. Set the cluster to CLAS mode:

 a. Change clusterMode: clas in values.yaml.

 b. Perform the helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

 13. Check that the Kubelink Pod restarted.

 14. The cluster is now running in the CLAS mode. All Container Workloads from this
cluster will no longer be visible on the PCE. Instead, the PCE will display only a
list of Kubernetes Workloads (Deployments, etc.).

 15. Set all nodes into original enforcement mode if those were previously changed
to visibility only.

IMPORTANT:
Before using your CLAS cluster, make sure you write mandatory infra-
structure rules to enable proper operation. See Rules and Traffic Con-
siderations with CLAS for details on these mandatory rules.

Illumio Core for Kubernetes and OpenShift 5.1 132

Reference: General

This chapter contains the following topics:

Troubleshooting 132

Troubleshooting CLAS Mode Architecture 141

Known Limitations 144

Kubelink Monitoring and Troubleshooting 146

Aggregating Logs from Kubelink and C-VEN Pods 155

This section lists a few known limitation of this release and how to troubleshoot issues
that may occur during the installation process.

Troubleshooting
This section describes how to troubleshoot common issues when installing Illumio on
Kubernetes or OpenShift deployments.

Helm deployment (and uninstall) fails with C-VEN stuck in
ContainerCreating state
During a deployment with Helm, if C-VEN pods do not start, and instead continually
show a status of ContainerCreating, check that you have the correct runtime set in your
illumio-values.yaml file. If, for example, the containerRuntime value is set to
containerd but you are now using a Docker runtime (parameter value of docker), then
the C-VEN will become stuck in a ContainerCreating state. If you later attempt to unin-
stall, the unpair action for the C-VEN will also become stuck in a ContainerCreating
state.

Chapter 6

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 133

Confirm that a C-VEN exhibiting these persistent ContainerCreating symptoms is set to
the proper containerRuntime value in its illumio-values.yaml. Another clue when
troubleshooting is to check output of the describe command for the affected pod:

kubectl -n illumio-system describe pod/<your_pod_name>

Check the output under the Containers section, and, within that section, under the
Mounts section, to confirm the pod is attempting to mount to a location appropriate for
your container runtime.

kubectl -n illumio-system describe pod/illumio-ven-unpair-cwj2f
 Name: illumio-ven-unpair-cwj2f
 Namespace: illumio-system

 [. . .]

 Mounts:
 /var/run/containerd/containerd.sock from unixsocks (rw)

This problem is also shown under the Events section of this output, with a Warning event
for that mount location due to the mismatched container runtime values.

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 [. . .]
 Warning FailedMount 96s (x11 over 7m48s) kubelet MountVolume.SetUp
failed for volume “unixsocks” : hostPath type check failed:
/var/run/containerd/containerd.sock is not a socket file

Failed Authentication with the Container Registry
In some cases, your Pods are in ImagePullBackOff state after the deployment:

$ kubectl -n kube-system get Pods
 NAME READY STATUS RESTARTS AGE
 coredns-58687784f9-h4pp2 1/1 Running 8 175d
 coredns-58687784f9-znn9j 1/1 Running 9 175d

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 134

 dns-autoscaler-79599df498-m55mg 1/1 Running 9 175d
 illumio-kubelink-87fd8d9f6-nmh25 0/1 ImagePullBackOff 0 28s

In this case, check the description of your Pods using the following command:

$ kubectl -n kube-system describe Pods illumio-kubelink-87fd8d9f6-nmh25
 Name: illumio-kubelink-87fd8d9f6-nmh25
 Namespace: kube-system
 Priority: 0
 Node: node2/10.0.0.12
 Start Time: Fri, 03 Apr 2020 21:05:07 +0000
 Labels: app=illumio-kubelink
 Pod-template-hash=87fd8d9f6
 Annotations: com.illumio.role: Kubelink
 Status: Pending
 IP: 10.10.65.55
 IPs:
 IP: 10.10.65.55
 Controlled By: ReplicaSet/illumio-kubelink-87fd8d9f6
 Containers:
 illumio-kubelink:
 Container ID:
 Image: registry.poc.segmentationpov.com/illumio-kubelink:2.0.x.xxxxxx
 Image ID:
 Port: <none>
 Host Port: <none>
 State: Waiting
 Reason: ImagePullBackOff
 Ready: False
 Restart Count: 0
 Environment:
 ILO_SERVER: <set to the key 'ilo_server' in secret 'illumio-
kubelink-config'> Optional: false
 ILO_CLUSTER_UUID: <set to the key 'ilo_cluster_uuid' in secret 'illumio-
kubelink-config'> Optional: false
 ILO_CLUSTER_TOKEN: <set to the key 'ilo_cluster_token' in secret 'illumio-
kubelink-config'> Optional: false
 CLUSTER_TYPE: Kubernetes
 IGNORE_CERT: <set to the key 'ignore_cert' in secret 'illumio-

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 135

kubelink-config'> Optional: true
 DEBUG_LEVEL: <set to the key 'log_level' in secret 'illumio-kubelink-
config'> Optional: true
 Mounts:
 /etc/pki/tls/ilo_certs/ from root-ca (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from illumio-kubelink-token-
7mvgk (ro)
 Conditions:
 Type Status
 Initialized True
 Ready False
 ContainersReady False
 PodScheduled True
 Volumes:
 root-ca:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: root-ca-config
 Optional: false
 illumio-kubelink-token-7mvgk:
 Type: Secret (a volume populated by a Secret)
 SecretName: illumio-kubelink-token-7mvgk
 Optional: false
 QoS Class: BestEffort
 Node-Selectors: <none>
 Tolerations: node-role.kubernetes.io/master:NoSchedule
 node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully
assigned kube-system/illumio-kubelink-87fd8d9f6-nmh25 to node2
 Normal SandboxChanged 45s kubelet, node2 Pod sandbox
changed, it will be killed and re-created.
 Normal BackOff 14s (x4 over 45s) kubelet, node2 Back-off pulling
image "registry.poc.segmentationpov.com/illumio-kubelink:2.0.x.xxxxxx"
 Warning Failed 14s (x4 over 45s) kubelet, node2 Error:
ImagePullBackOff

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 136

 Normal Pulling 1s (x3 over 46s) kubelet, node2 Pulling image
"registry.poc.segmentationpov.com/illumio-kubelink:2.0.x.xxxxxx"
 Warning Failed 1s (x3 over 46s) kubelet, node2 Failed to pull
image "registry.poc.segmentationpov.com/illumio-kubelink:2.0.x.xxxxxx": rpc error:
code = Unknown desc = Error response from daemon: unauthorized: authentication
required
 Warning Failed 1s (x3 over 46s) kubelet, node2 Error:
ErrImagePull

The messages at the end of the output above are self-explanatory that there is a prob-
lem with the authentication against the container registry. Verify the credentials you
entered in the secret for your private container registry and reapply it after fixing the
issue.

Kubelink Pod in CrashLoopBackOff State
In some cases, your Kubelink Pod is in CrashLoobBackOff state after the deployment:

$ kubectl -n kube-system get Pods
 NAME READY STATUS RESTARTS AGE
 coredns-58687784f9-h4pp2 1/1 Running 8 174d
 coredns-58687784f9-znn9j 1/1 Running 9 174d
 dns-autoscaler-79599df498-m55mg 1/1 Running 9 174d
 illumio-kubelink-8648c6fb68-mdh8p 0/1 CrashLoopBackOff 1 16s

In this case, check the logs of your Pods using the following command:

$ kubectl -n kube-system logs illumio-kubelink-8648c6fb68-mdh8p
 I, [2020-04-03T01:46:33.587761 #19] INFO -- : Starting Kubelink for PCE
https://mypce.example.com:8443
 I, [2020-04-03T01:46:33.587915 #19] INFO -- : Found 1 custom certs
 I, [2020-04-03T01:46:33.594212 #19] INFO -- : Installed custom certs to
/etc/pki/tls/certs/ca-bundle.crt
 I, [2020-04-03T01:46:33.619976 #19] INFO -- : Connecting to PCE
https://mypce.example.com:8443
 E, [2020-04-03T01:46:33.651410 #19] ERROR -- : Received a non retriable error 401
 /illumio/kubelink.rb:163:in `update_pce_resource': HTTP status code 401 uri:
https://mypce.example.com:8443/api/v2/orgs/10/container_clusters/42083a4d-dd92-
49e6-b495-6f84a940073c/put_from_cluster, request_id: 21bdfc05-7b02-442d-a778-

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 137

e6f2da2a462b response: request_body: {"kubelink_version":"2.0.x.xxxxxx","errors":
[],"manager_type":"Kubernetes v1.16.0"} (Illumio::PCEHttpException)
 from /illumio/kubelink.rb:113:in `initialize'
 from /illumio/main.rb:39:in `new'
 from /illumio/main.rb:39:in `block in main'
 from /external/lib/ruby/gems/2.4.0/gems/em-synchrony-1.0.6/lib/em-
synchrony.rb:39:in `block (2 levels) in synchrony'

In the example above, the request is rejected by the PCE because of a wrong iden-
tifier. Open your secret file for Kubelink, verify your cluster UUID and token, and make
sure you copy-pasted the same string provided by the PCE during cluster creation.

Container Cluster in Error
In some cases, the container cluster page displays an error indicating that duplicate
machine IDs were detected and functionality will be limited. See the screenshot
below.

To resolve this error, follow the steps in the section below. After following those steps,
restart the C-VEN Pod on each of the affected Kubernetes cluster node.

Verify Machine IDs on All Nodes

To verify machine-ids and resolve any duplicate IDs across nodes:

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 138

 1. Check the machineID of all your cluster nodes with the following command:

kubectl get node -o yaml | grep machineID

 Each machineID should be unique. See the example below:

$ kubectl get node -o yaml | grep machineID
 machineID: ec2eefcfc1bdfa9d38218812405a27d9
 machineID: ec2bcf3d167630bc587132ee83c9a7ad
 machineID: ec2bf11109b243671147b53abe1fcfc0

 2. As an alternative, you can also to check content of the /etc/machine-id file on all
cluster nodes. The output should be a single newline-terminated, hexadecimal,
32-character, and lowercase ID.

 3. If the machine-id string is unique for each node, then the environment is OK. If
the machine-id is duplicated across any of the nodes, then you must generate a
machine-id for each node which has the same machine-id.

 4. Running the following command displays the output of the machine-id:

cat /etc/machine-id

Example of machine-id output:

root@k8s-c2-node1:~# cat /etc/machine-id
 2581d13362cd4220b20020ff728efff8

Generate a New Machine ID

If the machineID is duplicated on some or all of the Kubernetes nodes, use the fol-
lowing steps to generate a new machine-id.

 l For CentOS or Red Hat:

rm -rf /etc/machine-id; systemd-machine-id-setup;
 systemctl restart kubelet

 l For Ubuntu:

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 139

rm -rf /etc/machine-id; rm /var/lib/dbus/machine-id; systemd-machine-id-setup;
 systemctl restart kubelet

NOTE:
Check the machine-id again after doing the above steps to verify that each
Kubernetes cluster node has a unique machine-id.

 Pods and Services Not Detected
In some cases, the Container Workloads page under Infrastructure > Container
Clusters > MyClusterName is empty although the Workloads page has all the cluster
nodes in it. This issue typically occurs when the wrong container runtime is monitored
by Illumio. To resolve this issue:

 1. Validate which container runtime is used in your Kubernetes or OpenShift
cluster.

 2. Open your configuration file for the C-VEN DaemonSet.

 3. Modify the unixsocks mount configuration to point to the right socket path on
your hosts.

NOTE:
This issue typically occurs when containerd or cri-o is the primary container
runtime on Kubernetes or OpenShift nodes and there is an existing docker
container runtime on the nodes that is not "active" (the socket still present
on the nodes and process still running, mostly some leftover from the sta-
ging phase of the servers).

Pods Stuck in Terminating State
In a Kubernetes cluster running containerd 1.2.6-10 as the container runtime, on delet-
ing a Pod while the C-VEN is deployed may result in the Pod being stuck in a ter-
minating state. If you see this error, redeploy the C-VEN and modify the socket path
as follows:

Change the volumeMount and hostPath from /var/run to /var/run/containerd in the illumio-
ven.yaml file

Chapter 6 Reference: General
Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 140

Enable Firewall Coexistence

NOTE:
If Kubelink was deployed on the Kubernetes cluster and is "In Sync" with
the PCE prior to the VEN installation, the manual configuration of firewall
coexistence is not required.

The Illumio C-VEN configures iptables on each host. By default, Illumio Core coex-
istence mode is set to Exclusive meaning the C-VEN will take full control of iptables
and flush any rules or chains which are not created by Illumio. In containerized envir-
onments, this may affect communications to/from container components (Docker,
Kubernetes, and Illumio Kubelink). Therefore, Illumio Core must allow firewall coex-
istence in order to achieve non-disruptive installation and deployment.

In order to allow firewall coexistence, you must set a scope of Illumio labels in the fire-
wall coexistence configuration. Once you provision a firewall coexistence scope, the
PCE will enable firewall coexistence configuration on C-VENs whose labels fall within
the scope.

NOTE:
Labels assigned to Kubernetes cluster nodes must fall within the firewall
coexistence scope. This is not a requirement for the labels assigned to con-
tainer workloads.

To manually configure firewall coexistence:

 1. Log in to the PCE UI and navigate to Settings > Security.

 2. On the Security page, navigate to the Manage Firewall Coexistence tab.

 3. Select Edit.

 4. In the edit wizard, click Add. The Add Firewall Coexistence Labels and Policy
State wizard will pop-up.

 5. Select a scope of Illumio labels. The scope must include the labels you intend to
use for your Kubernetes cluster nodes.

 a. Select All for Policy State.

 b. Illumio Core is Primary Firewall - Select your preference.

 i. Yes = (Recommended) Illumio iptable chains will be at the top of ipt-
ables at all times. Non-Illumio iptable chains can coexist, but will fol-
low after Illumio chains.

Chapter 6 Reference: General
Troubleshooting CLAS Mode Architecture

Illumio Core for Kubernetes and OpenShift 5.1 141

 ii. No = (Not Recommended) Non-Illumio iptable chains may coexist
and can be placed before Illumio chains.

 c. Click OK.

 6. Click Save.

 7. Provision the changes.

IMPORTANT:
Be sure to provision the saved changes or else firewall coexistence will not
take effect.

Below is an example of a Firewall Coexistence scope for an Kubernetes cluster which
has the following labels:

 l Role: Master OR Worker

 l Application: Kubernetes Infrastructure

 l Environment: Development

 l Location: Data Center 1

The firewall coexistence scope in the example uses the 'All Roles', 'All Environments',
'All Locations' objects to cover future Kubernetes clusters.

Troubleshooting CLAS Mode Architecture
If your upgrade or installation of CLAS-enabled clusters exhibits unusual behavior, fol-
low these steps to troubleshoot the issue:

 1. Check that the Kubelinks and C-VENs are operating. Verify at the Container
Clusters page, in the Summary and VENs tabs.

Chapter 6 Reference: General
Troubleshooting CLAS Mode Architecture

Illumio Core for Kubernetes and OpenShift 5.1 142

 2. Check that Kubernetes Namespace and Kubernetes Workload objects are cre-
ated, and are present in the PCE. Verify from the Kubernetes Workloads tab.

 3. Check that labeling is done correctly by examining each Kubernetes Workload:

Chapter 6 Reference: General
Troubleshooting CLAS Mode Architecture

Illumio Core for Kubernetes and OpenShift 5.1 143

 4. Check that NodePort Services have correct IPs. Find NodePort IPs on the Ser-
vice Backends tab, under the Virtual Services table column.

Chapter 6 Reference: General
Known Limitations

Illumio Core for Kubernetes and OpenShift 5.1 144

 5. Check that traffic is flowing properly. Find the pod-to-pod, and pod-to-applic-
ation flows with IP information from the Traffic view. Select “Individual Con-
nections” to see the name of the Kubernetes Workloads and the IPs of the Pods
sending and receiving the traffic.

Known Limitations
The known limitations in this release are:

Chapter 6 Reference: General
Known Limitations

Illumio Core for Kubernetes and OpenShift 5.1 145

 l Kube-proxy mode set to IPVS is currently not supported.

 l If a C-VEN on a server hosting containers is paired directly into the Enforced
policy state, other nodes may lose connectivity with the master node until policy
is synchronized across all the nodes.

 l Pods which run on the host network stack (inherit the host IP address) are not
reported to the PCE. Any rules written for the host will also be inherited by any
hostNetworked Pods on the host.

 l If you are using an external load balancer, the policy configuration will be
dependent on the type of the load balancer used.

 l Kubernetes uses NAT tables, which depend on traffic being tracked and stateful.
Therefore, it is not recommended to use stateless rules.

 l If a Kubernetes service has both port 1234/TCP and port 2345/UDP configured,
a rule configured with the Pod as Consumer and the virtual service as Provider
will open up both ports 1234/TCP and 2345/TCP, and 1234/UDP and 2345/UDP
on the Pod's firewall (outbound rule).
In case of a Kubernetes service configured with a port and targetPort statement
in the manifest file as shown in the example below:

apiVersion: v1
 kind: Service
 metadata:
 name: web-frontend-svc
 namespace: app1
 labels:
 app: app1
 tier: web-frontend
 annotations:
 com.illumio.role: Web
 spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 - port: 8081
 targetPort: 81
 protocol: UDP

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 146

 selector:
 app: app1
 tier: web-frontend

This configuration is supported with Illumio Core. In this case, only the port num-
ber associated to the port statement will show this issue, the port
number associated to the targetPort statement will not show this issue and will
use the protocol specified in the Service yaml file.

Kubelink Monitoring and Troubleshooting
If you deployed Illumio Core for Kubernetes 3.0.0 or later, Kubelink is deployed as
part of the overall Helm Chart deployment, as described in "Deployment with Helm
Chart (Core for Kubernetes 3.0.0 and Later)." If you deployed an earlier version of the
product, refer to the "Deploy Kubelink in Your Cluster" section of the "Deployment for
Versions 21.5.15 or Earlier" chapter for details on how to configure and deploy
Kubelink on Kubernetes.

Kubelink Process
Kubelink uses a single Ruby process which runs as: ruby /illumio/init.rb.

Kubelink Startup Log Messages
After deploying Kubelink (whether by Helm Chart or manually), verify your deploy-
ment with the kubectl get pods -n illumio-system command. The kubelinkpod
should be shown with the Running status. In addition, you can review the log file
entries after the deployment with the kubectl logs command pointing to the
Kubelink pod name.

kubectl logs <kubelink_pod_name> -n illumio-system

A typical successful Kubelink deployment produces log entries similar to these:

I, [2022-05-23T14:36:53.847248 #10] INFO -- : Starting Kubelink for PCE
https://192.168.88.127:10443
 I, [2022-05-23T14:36:53.847502 #10] INFO -- : Metrics reporting enabled;
reporting window 30
 I, [2022-05-23T14:36:53.847520 #10] INFO -- : PCE fqdn

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 147

https://192.168.88.127:10443
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:36:53.893048 #10] INFO -- : Successfully connected to
PCE
 I, [2022-05-23T14:36:53.893170 #10] INFO -- : begin sync on resource
namespaces
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:36:53.904369 #10] INFO -- : Synchronized 6 namespaces.
 I, [2022-05-23T14:36:53.904424 #10] INFO -- : sync on resource namespaces
successful, setting up resource version to 184232
 I, [2022-05-23T14:36:53.904522 #10] INFO -- : Start watch on namespaces
with version 184232
 I, [2022-05-23T14:36:53.905678 #10] INFO -- : begin sync on resource
nodes
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:36:53.918093 #10] INFO -- : Synchronized 1 nodes.
 I, [2022-05-23T14:36:53.918143 #10] INFO -- : sync on resource nodes
successful, setting up resource version to 184232
 I, [2022-05-23T14:36:53.918175 #10] INFO -- : Start watch on nodes with
version 184232
 I, [2022-05-23T14:36:53.919265 #10] INFO -- : begin sync on resource pods
 I, [2022-05-23T14:36:53.935536 #10] INFO -- : sync on resource pods
successful, setting up resource version to 184232
 I, [2022-05-23T14:36:53.935601 #10] INFO -- : Start watch on pods with
version 184232
 I, [2022-05-23T14:36:53.936938 #10] INFO -- : begin sync on resource
services
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 148

{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:36:54.029965 #10] INFO -- : Synchronized 3 services,
full=true, force=false
 I, [2022-05-23T14:36:54.030013 #10] INFO -- : sync on resource services
successful, setting up resource version to 184232
 I, [2022-05-23T14:36:54.030046 #10] INFO -- : Start watch on services
with version 184232
 I, [2022-05-23T14:36:54.031042 #10] INFO -- : begin sync on resource
replica_sets
 I, [2022-05-23T14:36:54.100090 #10] INFO -- : Nothing to sync
 I, [2022-05-23T14:36:54.100237 #10] INFO -- : sync on resource replica_
sets successful, setting up resource version to 184232
 I, [2022-05-23T14:36:54.100281 #10] INFO -- : Start watch on replica_sets
with version 184232
 I, [2022-05-23T14:36:54.101226 #10] INFO -- : begin sync on resource
stateful_sets
 I, [2022-05-23T14:36:54.170175 #10] INFO -- : Nothing to sync
 I, [2022-05-23T14:36:54.170220 #10] INFO -- : sync on resource stateful_
sets successful, setting up resource version to 184232
 I, [2022-05-23T14:36:54.170267 #10] INFO -- : Start watch on stateful_
sets with version 184232
 I, [2022-05-23T14:36:54.171159 #10] INFO -- : begin sync on resource
daemon_sets
 I, [2022-05-23T14:36:54.245866 #10] INFO -- : Nothing to sync
 I, [2022-05-23T14:36:54.246025 #10] INFO -- : sync on resource daemon_
sets successful, setting up resource version to 184232
 I, [2022-05-23T14:36:54.246210 #10] INFO -- : Start watch on daemon_sets
with version 184232
 I, [2022-05-23T14:36:54.247946 #10] INFO -- : begin sync on resource
replication_controllers

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 149

 I, [2022-05-23T14:36:54.324925 #10] INFO -- : Nothing to sync
 I, [2022-05-23T14:36:54.324977 #10] INFO -- : sync on resource
replication_controllers successful, setting up resource version to 184232
 I, [2022-05-23T14:36:54.325032 #10] INFO -- : Start watch on replication_
controllers with version 184232
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:36:54.505403 #10] INFO -- : replica_sets MODIFIED
 I, [2022-05-23T14:37:24.312086 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:37:24.312191 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[{:namespace=>"illumio-system", "added"=>0,
"modified"=>0, "deleted"=>1}], :service_changes=>[], :duration_
seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:37:54.343467 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:37:54.343874 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:38:24.373847 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:38:24.373924 #10] INFO -- : Attaching metrics report to

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 150

heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:38:54.380933 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:38:54.381009 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:39:24.401636 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:39:24.401748 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:39:54.422494 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:39:54.422595 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:40:24.453077 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:40:24.453217 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:40:54.466210 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:40:54.466455 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:41:24.296410 #10] INFO -- : Verify watches for
["namespaces", "nodes", "pods", "services", "replica_sets", "stateful_
sets", "daemon_sets", "replication_controllers"]

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 151

 I, [2022-05-23T14:41:24.296468 #10] INFO -- : Watch client namespaces
Connection Idle: 270.3355407714844s
 I, [2022-05-23T14:41:24.296485 #10] INFO -- : Watch client nodes
Connection Idle: 179.93679809570312s
 I, [2022-05-23T14:41:24.296499 #10] INFO -- : Watch client pods
Connection Idle: 240.5237274169922s
 I, [2022-05-23T14:41:24.296513 #10] INFO -- : Watch client services
Connection Idle: 270.0260314941406s
 I, [2022-05-23T14:41:24.296526 #10] INFO -- : Watch client replica_sets
Connection Idle: 269.85888671875s
 I, [2022-05-23T14:41:24.296542 #10] INFO -- : Watch client stateful_sets
Connection Idle: 270.0269775390625s
 I, [2022-05-23T14:41:24.296573 #10] INFO -- : Watch client daemon_sets
Connection Idle: 270.02490234375s
 I, [2022-05-23T14:41:24.296731 #10] INFO -- : Watch client replication_
controllers Connection Idle: 270.02490234375s
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:41:24.300532 #10] INFO -- : Synchronized 3 services,
full=true, force=true
 I, [2022-05-23T14:41:24.452846 #10] INFO -- : Heart beating to PCE
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 W, [2022-05-23T14:41:54.186807 #10] WARN -- : watch client for stateful_
sets error callback invoked. Resetting watch ...
 W, [2022-05-23T14:41:54.186863 #10] WARN -- : Watch on stateful_sets
ended. Resetting it after 3 seconds
 I, [2022-05-23T14:41:54.441880 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:41:54.441991 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>60}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:41:57.193339 #10] INFO -- : begin sync on resource
stateful_sets

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 152

 I, [2022-05-23T14:41:57.267375 #10] INFO -- : Nothing to sync
 I, [2022-05-23T14:41:57.267411 #10] INFO -- : sync on resource stateful_
sets successful, setting up resource version to 184451
 I, [2022-05-23T14:41:57.267424 #10] INFO -- : Start watch on stateful_
sets with version 184451
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details
 I, [2022-05-23T14:42:24.483142 #10] INFO -- : Heart beating to PCE
 I, [2022-05-23T14:42:24.483224 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
 [WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and
https://github.com/igrigorik/em-http-request/issues/339 for details

Verify Kubelink Deployment
To verify your Kubelink deployment.

 l To check the Kubelink Pod status for Kubernetes:

kubectl get pods -n illumio-system

 l To check the Kubelink Pod status for OpenShift:

oc get pods -n illumio-system

The illumio-kubelink-xxxxxxxxxx-xxxxx Pod should be in the "Running" state. If the
either get pods -n illumio-system command shows the kubelink pod is not suc-
cessfully running, check the log file for any ERROR messages.

After Kubelink is successfully deployed, you can check the cluster information in the
Illumio PCE UI. From the main menu, navigate to Infrastructure > Container Clusters.

Below is an example of a healthy container cluster state reported by Kubelink, where
Status is "In Sync".

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 153

You can also verify in the PCE UI that Kubelink was successfully deployed by checking
the following:

 l Under the Container Workload Profiles tab, namespaces created in your Kuber-
netes or OpenShift cluster should be listed. An example is shown below.

 l Under Policy Objects > Virtual Services, services created in your Kubernetes or
OpenShift cluster should be listed. An example is shown below.

Chapter 6 Reference: General
Kubelink Monitoring and Troubleshooting

Illumio Core for Kubernetes and OpenShift 5.1 154

PCE-Kubelink Connection and Heartbeat
The Kubelink heartbeat to the PCE is logged in its log file. Use the kubectl logs com-
mand, and search for the string Heart beating to PCE to confirm. To confirm PCE-
Kubelink connectivity, check the PCE UI, which will show the Kubelink pod as being
offline if the heartbeat is missing 2-3 times (about 10 minutes).

Additional Kubelink Monitoring
Other Kubelink actions that can be confirmed in the Kubelink log file include:

API request succeeds

When Kubelink successfully sets up a watch with the Kubernetes API, the related log
entry is:

sync on resource <RESOURCE> successful, setting up resource version to
<RESOURCE VERSION>

Information sent to PCE

When Kubelink successfully sends information to the PCE, the related log entry is:

Synchronized 2 <RESOURCE>, full=..., force=...

Setting Log Verbosity
The log verbosity level is set by default to include INFO, WARNING, and ERROR mes-
sages in the log. If your log appears to be extremely small (showing only ERRORs, for
example), or is extremely large (which could indicate being set at the DEBUG level),
you can check the log_level setting in the illumio-kubelink-secret.yml file. Values for
this setting are:

log_level
Setting

Description

0 Debug

1 Info (default)

2 Warn

3 Error

Chapter 6 Reference: General
Aggregating Logs from Kubelink and C-VEN Pods

Illumio Core for Kubernetes and OpenShift 5.1 155

Values are cumulative, in that a setting includes all other settings greater than it. For
example, the default setting of '1' includes in the log file all INFO, WARNING, and
ERROR messages. Whereas a setting of '3' would only include ERROR messages.

Aggregating Logs from Kubelink and C-VEN Pods
There are many log aggregation solutions; this topic describes one example of using
Fluent Bit to aggregate our logs. Fluent Bit is a lightweight version of Fluentd with
many outputs. See https://docs.fluentbit.io/manual/pipeline/outputs for official
details about supported Fluent Bit output plugins.

Loki is used as storage in this example. Change the output section of your Fluent Bit
yaml file to suit your needs.

Loki and Grafana
As an example installation for testing, Loki and Grafana are installed in the illumio-sys-
tem namespace. Loki is installed in monolithic mode to use file system storage For
more details, see https://grafana.com/docs/loki/latest/setup/install/helm/install-
monolithic/.

 helm repo add grafana https://grafana.github.io/helm-charts
 helm repo update
 helm upgrade --install loki grafana/loki --values loki-values.yaml -n
illumio-system

Example contents of loki-values.yaml:

loki:
 commonConfig:
 replication_factor: 1
 storage:
 type: 'filesystem'
 auth_enabled: false

 singleBinary:
 replicas: 1

 # lokiCanary:
 # enabled: false

https://docs.fluentbit.io/manual/pipeline/outputs
https://grafana.com/docs/loki/latest/setup/install/helm/install-monolithic/
https://grafana.com/docs/loki/latest/setup/install/helm/install-monolithic/

Chapter 6 Reference: General
Aggregating Logs from Kubelink and C-VEN Pods

Illumio Core for Kubernetes and OpenShift 5.1 156

 # gateway:
 # enabled: false
 # grafanaAgent:
 # installOperator: true

 helm upgrade --install --wait -n illumio-system --set admin.username=admin
--set admin.password=UseYourPassword --set persistence.enabled=false -f
grafana-values.yaml grafana oci://registry-
1.docker.io/bitnamicharts/grafana
 kubectl -n illumio-system expose deployment grafana --type=NodePort --
name=grafana-service
 kubectl -n illumio-system get svc grafana-service -o go-template='
{{range.spec.ports}}{{if .nodePort}}{{.nodePort}}{{"\n"}}{{end}}{{end}}'

Example contents of grafana-values.yaml:

dashboardsProvider:
 enabled: true

Fluent Bit
The following procedure shows one way of downloading and installing Fluent Bit:

 helm repo add fluent https://fluent.github.io/helm-charts
 helm repo update
 helm upgrade --install fluent-bit fluent/fluent-bit --version 0.40.0 --
values fluentbit-values.yaml -n illumio-system
 kubectl --namespace illumio-system patch daemonsets.apps fluent-bit --
patch-file fluentbit-patch-nodename.yaml

Example contents of fluentbit-values.yaml:

labels
 app: IllumioFluentBit

 image:
 pullPolicy: IfNotPresent

Chapter 6 Reference: General
Aggregating Logs from Kubelink and C-VEN Pods

Illumio Core for Kubernetes and OpenShift 5.1 157

 extraVolumes:
 - name: illumio-ven-data
 hostPath:
 path: /opt/illumio_ven_data
 type: Directory

 extraVolumeMounts:
 - name: illumio-ven-data
 mountPath: /opt/illumio_ven_data

 config:
 service: |
 [SERVICE]
 daemon Off
 flush {{ .Values.flush }}
 log_level debug
 parsers_file parsers.conf
 parsers_file custom_parsers.conf
 http_server On
 http_listen 0.0.0.0
 http_port {{ .Values.metricsPort }}
 health_check On

 inputs: |
 [INPUT]
 Name tail
 Path /var/log/containers/illumio-kubelink*.log
 Tag kubelink.*
 Multiline.parser docker,cri
 Read_From_Head true
 Buffer_Chunk_Size 3MB
 Buffer_Max_Size 10MB
 Mem_Buf_Limit 10MB
 Skip_Long_Lines Off
 [INPUT]
 Name tail
 Path /opt/illumio_ven_data/log/*.log

Chapter 6 Reference: General
Aggregating Logs from Kubelink and C-VEN Pods

Illumio Core for Kubernetes and OpenShift 5.1 158

 Tag cven.*
 Read_From_Head true
 Buffer_Chunk_Size 3MB
 Buffer_Max_Size 10MB
 Mem_Buf_Limit 10MB
 Skip_Long_Lines Off

 filters: |
 [FILTER]
 Name kubernetes
 Match kubelink.*
 Merge_Log On
 Kube_Tag_Prefix kubelink.var.log.containers.
 Merge_Log_Key log_processed
 [FILTER]
 Name parser
 Parser cvenparser
 Match cven.*
 Key_name log
 Preserve_key false
 Reserve_data true
 [FILTER]
 Name record_modifier
 Match cven.*
 Record nodename ${K8S_NODE_NAME}

 upstream: {}

 outputs: |
 [OUTPUT]
 #for debugging only should be turned off in PROD
 #PLEASE TURN OFF IN PROD
 Name stdout
 Match *

 [OUTPUT]
 Name loki
 Match *

Chapter 6 Reference: General
Aggregating Logs from Kubelink and C-VEN Pods

Illumio Core for Kubernetes and OpenShift 5.1 159

 Host loki.illumio-system.svc.cluster.local
 Port 3100
 Labels job=fluentbit

 customParsers: |
 [PARSER]
 Name cvenparser
 Format regex
 Regex ^(?<time>[^]+) (?<message>.+)$
 Time_Key time
 Time_Format %Y-%m-%dT%H:%M:%S.%L

 extraFiles {}

 logLevel: info

Example contents of fluentbit-patch-nodeport.yaml:

spec:
 template:
 spec:
 containers:
 - name: fluent-bit
 env:
 - name: K8S_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName

Illumio Core for Kubernetes and OpenShift 5.1 160

Reference: OpenShift Deployment

After you set up your clusters, make sure you perform the steps in the order provided
in this section.

Prepare OpenShift for Illumio Core
You need to do these steps before installing the VEN and pairing.

If the prerequisite steps are not performed prior to VEN and Kubelink installation, con-
tainerized environments and Kubelink may be disrupted.

Unique Machine ID
Some of the functionalities and services provided by the Illumio VEN and Kubelink
depend on the Linux machine-id of each OpenShift cluster node. Each machine-id
must be unique in order to take advantage of the functionalities. By default, the Linux
OS generates a random machine-id to give each Linux host uniqueness. However,
there are cases when machine-id's can be duplicated across machines. This is com-
mon across deployments that clone machines from a golden image, for example, spin-
ning up virtual machines from VMware templates or creating Amazon EC2 instances
from an AMI.

To verify machine-ids and resolve any duplicate machine-ids across nodes:

 1. ssh into every node of the OpenShift cluster (master, infra, and worker) as the
root user.

 2. Check the contents of the /etc/machine-id file. The output is a string of letters
and numbers.

Chapter 7

Chapter 7 Reference: OpenShift Deployment
Prepare OpenShift for Illumio Core

Illumio Core for Kubernetes and OpenShift 5.1 161

 3. If the machine-id string is unique for each node, then the environment is ok. If
the machine-id is duplicated across any of the nodes, you must generate a
machine-id for each node which has the same machine-id.

You can run the following command to view the output of machine-id:

cat /etc/machine-id

If the machine-id is duplicated, then run the command listed below to generate a new
machine-id. You will also need to restart the atomic-OpenShift-node service on each
node. If the machine-id is not duplicated, go to the next section.

rm -rf /etc/machine-id; touch /etc/machine-id; systemd-machine-id-setup;
 service atomic-OpenShift-node restart

NOTE:
Check the machine-id again to verify that each machine has a unique
machine-id.

Create Labels
For details on creating labels, see "Labels and Label Groups" in the Security Policy
Guide.

The labels listed below are used in examples throughout this document. You are not
required to use the same labels.

Name Label type

Openshift Infrastructure Application

Development Environment

HQ Location

Kubelink Role

Master Role

Infra Role

Compute Role

Create Pairing Profiles
After creating labels for your OpenShift cluster nodes, you can use those labels to cre-
ate pairing profiles. You do not need to create pairing profiles for container

Chapter 7 Reference: OpenShift Deployment
Deploy Kubelink

Illumio Core for Kubernetes and OpenShift 5.1 162

workloads.

For ease of configuration and management, consider applying the same Application,
Environment, and Location labels across all nodes of the same OpenShift cluster. The
screenshot below show examples of three pairing profiles for one OpenShift Enter-
prise cluster. The pairing profiles are used for pairing either master, compute, or infra-
structure nodes of an OpenShift cluster.

TIP:
It is recommended that all pairing profiles for OpenShift nodes to not use
enforced policy state.

You may use build or test mode for initial configuration and only move into
enforced state after you have completed all other configuration steps in
this guide (setup Kubelink, discover services, and write rules).

Deploy Kubelink
Download the required resources such as Kubelink docker image, secret file, and
deployment file from the Illumio Support portal (login required).

Prerequisites

 l Kubelink deployment file provided by Illumio. For OpenShift deployments, the
file name is illumio-kubelink-openshift.yml.

 l Kubelink secret file provided by Illumio. This file name is illumio-kubelink-
secret.yml.

 l Illumio's Kubelink docker image uploaded to your private docker registry.

Create Container Cluster

 1. Log into the PCE as a user with Global Organization Owner privileges.

 2. From the PCE web console menu, choose Infrastructure > Container Clusters.

https://support.illumio.com/software/index.html

Chapter 7 Reference: OpenShift Deployment
Deploy Kubelink

Illumio Core for Kubernetes and OpenShift 5.1 163

 3. Click Add.

 a. Enter a Name.

 b. Save the Container Cluster.

 4. You will see a summary page of the new Container Cluster. Copy the values of
the Cluster ID and Cluster Token found under the Cluster Pairing Token section.

 5. Once you have the values, you can exit the Container Cluster page.

Configure Container Workload Profile
When configuring a new Container Cluster, it is recommended to set the default set-
tings shared by all the Container Workload Profiles. Illumio provides a Container Work-
load Profile template that can be used for that purpose. By defining the default Policy
State and minimum set of labels common to all namespaces in the cluster, you will
save time later on when new namespaces are discovered by Kubelink. Each new pro-
file created will inherit what was defined in the template.

SSL Verification

Illumio does not provide in this release a simple way to redefine all at once the labels
associated to each profile, hence it is strongly recommended to use this template to

Chapter 7 Reference: OpenShift Deployment
Deploy Kubelink

Illumio Core for Kubernetes and OpenShift 5.1 164

define the default values for all profiles part of the same cluster.

To define the default parameters for all profiles using a template, under Container
Workload Profiles, click on Edit default settings and fill in the different fields. An
example is shown below:

Once you validate, you should see something like the following:

Configure Kubelink Secret
This step assumes that you have created a Container Cluster object in the PCE. You
will need the Cluster ID and Cluster Token values for the Kubelink secret.

 1. ssh to the master node.

 2. Open the kubelink secret YAML file and modify the stringData.

Chapter 7 Reference: OpenShift Deployment
Deploy Kubelink

Illumio Core for Kubernetes and OpenShift 5.1 165

 a. ilo_server = the PCE URL and port. Example: https://mypce.example.com:8443

 b. ilo_cluster_uuid = Cluster ID value from previous step. Example: dc1ecbf9-
f481-44a7-a4b7-fb028b1b4ece

 c. ilo_cluster_token = Cluster Token from previous step. Example: 1_d37ea3d-
cd34ae8ae2a78fb33f4e159cc4003e95cc4babe0d992062127a21dab4

 d. ignore_cert = SSL verification. The value is boolean and is recommended to
be set to false so that Kubelink requires PCE certificate verification.
Example: 'false'

 e. log_level = Log level where '0' for debug, '1' for info, '2' for warn, or '3' for
error. Example: '1'

SSL Verification

Illumio does not recommend turning off SSL verification (ignore_cert: 'true'); how-
ever, this is an option for deployments in which the PCE uses a self-signed cer-
tificate.

Contents of a modified illumio-kubelink-secret.yml file are shown below.

#
 # Copyright 2013-2020 Illumio, Inc. All Rights Reserved.
 #

 apiVersion: v2
 kind: Secret
 metadata:
 name: illumio-kubelink-config
 namespace: kube-system
 type: Opaque
 stringData:
 ilo_server: https://mypce.example.com:8443 # Example:
https://mypce.example.com:8443
 ilo_cluster_uuid: dc1ecbf9-f481-44a7-a4b7-fb028b1b4ece # Example: cc4997c1-
408b-4f1d-a72b-91495c24c6a0
 ilo_cluster_token: 1_
d37ea3dcd34ae8ae2a78fb33f4e159cc4003e95cc4babe0d992062127a21dab4 # Example:
170b8aa3dd6d8aa3c284e9ea016e8653f7b51cb4b0431d8cbdba11508763f3a3
 ignore_cert: 'false' # Set to 'true' to ignore the PCE certificate
 log_level: '1' # Default log level is info

Chapter 7 Reference: OpenShift Deployment
Deploy Kubelink

Illumio Core for Kubernetes and OpenShift 5.1 166

NOTE:
If you are going to use a private PKI to sign the PCE certificate, see
Implement Kubelink with a Private PKI before deploying Kubelink.

 3. Save the changes.

 4. Create the Kubelink secret using the file.

oc create -f illumio-kubelink-secret.yml

Deploy Kubelink
Modify the Kubelink configuration file to point to the correct docker image. The
example in this document has kubelink:<version#> uploaded to registry.ex-
ample.com:443/illumio, which means the image link in this example is registry.ex-
ample.com:443/illumio/kubelink:<version#>

 1. Edit the Kubelink configuration YAML file. For OpenShift clusters, the file name
will be illumio-kubelink-openshift.yml.

 a. Inside the YAML you will find the spec: > template: > spec: > containers:
section. Paste the image link in the image: attribute. The string should be
wrapped in single quotes as shown in the example below.

 2. Save the changes.
Below is a snippet from an example of the Kubelink configuration for OpenShift
to illustrate the image location.

apiVersion: apps/v1beta1
 kind: Deployment
 metadata:
 name: illumio-kubelink
 namespace: kube-system
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 labels:

Chapter 7 Reference: OpenShift Deployment
Deploy Kubelink

Illumio Core for Kubernetes and OpenShift 5.1 167

 app: illumio-kubelink
 spec:
 # nodeSelector:
 # node-role.kubernetes.io/master: ""
 serviceAccountName: illumio-kubelink
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 containers:
 - name: illumio-kubelink
 image: 'registry.example.com:443/illumio/illumio-kubelink:<version#>'
 imagePullPolicy: Always
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-kubelink-config

 key: ilo_server

 3. (Optional) If you're using a private PKI to sign the PCE certificate, make sure you
add the references to the root CA certificate that signed the PCE certificate. For
more details, see Implement Kubelink with a Private PKI.

 4. To deploy Kubelink, run the following command:

oc apply -f illumio-kubelink-openshift.yml

After Kubelink is successfully installed, you can check the cluster information by using
the Illumio PCE web console. From the main menu, navigate to Infrastructure > Con-
tainer Clusters.

Below is an example of a healthy container cluster state reported by Kubelink.

Chapter 7 Reference: OpenShift Deployment
Implement Kubelink with a Private PKI

Illumio Core for Kubernetes and OpenShift 5.1 168

Implement Kubelink with a Private PKI
This section describes how to implement Kubelink with a PCE using a certificate
signed by a private PKI. It describes how to configure Kubelink to accept the cer-
tificate from the PCE signed by a private root or intermediate Certificate Authority
(CA) and ensure that Kubelink can communicate in a secure way with the PCE.

NOTE:
The steps described below are not applicable for a PCE using a self-signed
certificate.

Prerequisites

 l Access to the root CA to download the root CA certificate.

 l Access to your Kubernetes cluster and can run kubectl commands.

Chapter 7 Reference: OpenShift Deployment
Implement Kubelink with a Private PKI

Illumio Core for Kubernetes and OpenShift 5.1 169

 l Correct privileges in your Kubernetes cluster to create resources like a con-
figmaps, secrets, and pods.

 l Access to the PCE UI as a Global Organization Owner.

Download the Root CA Certificate
Before you begin, ensure that you have access to the root CA certificate. The root CA
certificate is a file that can be exported from the root CA without compromising the
security of the company. It is usually made available to external entities to ensure a
proper SSL handshake between a server and its clients.

You can download the root CA cert in the CRT format on your local machine. Below is
an example of a root CA certificate:

$ cat root.democa.illumio-demo.com.crt
 -----BEGIN CERTIFICATE-----
 MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
 ---output suppressed---
 wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
 -----END CERTIFICATE-----

You can also get the content of your root CA certificate in a readable output format
by running the following command:

$ openssl x509 -text -noout -in ./root.democa.illumio-demo.com.crt
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 fc:34:35:f3:c0:8a:f2:56:e1:89:8a:67:8f:7d:78:76:47:dd:2f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Validity
 Not Before: Jan 20 00:05:36 2020 GMT
 Not After : Jan 17 00:05:36 2030 GMT
 Subject: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption

Chapter 7 Reference: OpenShift Deployment
Implement Kubelink with a Private PKI

Illumio Core for Kubernetes and OpenShift 5.1 170

 Public-Key: (4096 bit)
 Modulus:
 00:c0:e5:48:7d:97:f8:5b:8c:ef:ac:16:a8:8c:aa:
 68:b8:48:af:28:cd:17:8f:02:c8:82:e9:69:62:e2:
 89:2b:be:bd:34:fc:e3:4d:3f:86:5e:d7:e6:89:34:
 71:60:e6:54:61:ac:0f:26:1c:99:6f:80:89:3f:36:
 b3:ad:78:d1:6c:3f:d7:23:1e:ea:51:14:48:74:c3:
 e8:6e:a2:79:b1:60:4c:65:14:2a:f1:a0:97:6c:97:
 50:43:67:07:b7:51:5d:2c:12:49:81:dc:01:c9:d1:
 57:48:32:2e:87:a8:d2:c0:b9:f8:43:b2:58:10:af:
 54:59:09:05:cb:3e:f0:d7:ef:70:cc:fc:53:48:ee:
 a4:a4:61:f1:d7:5b:7c:a9:a8:92:dc:77:74:f4:4a:
 c0:4a:90:71:0f:6d:9e:e7:4f:11:ab:a5:3d:cd:4b:
 8b:79:fe:82:1b:16:27:94:8e:35:37:db:dd:b8:fe:
 fa:6d:d9:be:57:f3:ca:f3:56:aa:be:c8:57:a1:a8:
 c9:83:dd:5a:96:5a:6b:32:2d:5e:ae:da:fc:85:76:
 bb:77:d5:c2:53:f3:5b:61:74:e7:f3:3e:4e:ad:10:
 7d:4f:ff:90:69:7c:1c:41:2f:67:e4:13:5b:e6:3a:
 a3:2f:93:61:3b:07:56:59:5a:d9:bc:34:4d:b3:54:
 b5:c6:e5:0a:88:e9:62:7b:4b:85:d2:9e:4c:ee:0b:
 0d:f4:72:b1:1b:44:04:93:cf:cc:bb:18:31:3a:d4:
 83:4a:ff:15:42:2d:91:ca:d0:cb:36:d9:8d:62:c0:
 41:59:1a:93:c7:27:79:08:94:b2:a2:50:3c:57:27:
 33:af:f0:b6:92:44:49:c5:09:15:a7:43:2a:0f:a9:
 02:61:b3:66:4f:c3:de:d3:63:1e:08:b1:23:ea:69:
 90:db:e8:e9:1e:21:84:e0:56:e1:8e:a1:fa:3f:7a:
 08:0f:54:0a:82:41:08:6b:6e:bb:cf:d6:5b:80:c6:
 ea:0c:80:92:96:ab:95:5d:38:6d:4d:da:38:6b:42:
 ef:7c:88:58:83:88:6d:da:28:62:62:1f:e5:a7:0d:
 04:9f:0d:d9:52:39:46:ba:56:7c:1d:77:38:26:7c:
 86:69:58:4d:b0:47:3a:e2:be:ee:1a:fc:4c:de:67:
 f3:d5:fe:e6:27:a2:ef:26:86:19:5b:05:85:9c:4c:
 02:24:76:58:42:1a:f8:e0:e0:ed:78:f2:8f:c8:5a:
 20:a9:2d:0b:d4:01:fa:57:d4:6f:1c:0a:31:30:8c:
 32:7f:b0:01:1e:fe:94:96:03:ee:01:d7:f4:4a:83:
 f5:06:fa:60:43:15:05:9a:ca:88:59:5c:f5:13:09:
 82:69:7f
 Exponent: 65537 (0x10001)

Chapter 7 Reference: OpenShift Deployment
Implement Kubelink with a Private PKI

Illumio Core for Kubernetes and OpenShift 5.1 171

 X509v3 extensions:
 X509v3 Subject Key Identifier:
 3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92
 X509v3 Authority Key Identifier:
 keyid:3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 28:24:86:91:a6:4a:88:e4:8d:6b:fc:67:2a:68:08:67:35:e5:
 a6:77:ff:07:4b:89:53:99:2e:6d:95:df:12:81:28:6a:8e:6f:
 5a:98:95:5b:4a:21:ae:f0:20:a4:4e:06:b2:4e:5a:67:c1:6a:
 06:f1:0f:c1:f7:7e:f2:e0:b3:9d:d8:54:26:6a:b2:1c:19:b8:
 b5:5c:c7:03:6b:f7:70:9e:72:85:c9:29:55:f9:f4:a4:f2:b4:
 3b:3d:ce:25:96:67:32:1e:8d:e2:00:22:55:4b:05:4f:ee:0e:
 67:ac:db:1b:61:da:5f:9c:10:1c:0c:05:66:c0:5b:5f:b9:95:
 59:a9:58:5b:e7:69:ac:b0:bd:b3:c2:a3:35:58:01:a4:ff:c0:
 8d:ac:1c:19:21:41:50:fb:8e:e0:f5:a9:ad:ec:de:cb:53:04:
 a9:d8:ac:76:8a:09:0d:7c:c6:1a:bc:06:74:bb:10:1c:aa:07:
 f6:cb:b2:1b:0c:0c:65:03:45:2b:51:d5:6e:a0:4d:91:ce:c5:
 ed:8d:a9:e7:f6:37:7d:ab:1b:a4:a2:a3:3b:76:17:5b:d9:3a:
 9c:c1:df:cc:cd:a0:b0:a9:5c:74:61:d7:a0:1d:04:67:68:ee:
 a6:7b:1e:41:a4:02:fc:65:9e:e3:c1:c2:57:b2:2e:b0:ff:a9:
 86:82:35:4d:29:b2:fe:74:2e:b8:37:5d:2b:e8:69:f2:80:29:
 19:f1:1e:7a:5d:e3:d2:51:50:46:30:54:7e:b8:ad:59:61:24:
 45:a8:5a:fe:19:ff:09:31:d0:50:8b:e2:15:c0:a2:f1:20:95:
 63:55:18:a7:a2:ad:16:25:c7:a3:d1:f2:e5:be:6d:c0:50:4b:
 15:ac:e0:10:5e:f3:7b:90:9c:75:1a:6b:e3:fb:39:88:e4:e6:
 9f:4c:85:60:67:e8:7d:2e:85:3d:87:ed:06:1d:13:0b:76:d7:
 97:a5:b8:05:76:67:d6:41:06:c5:c0:7a:bd:f4:c6:5b:b2:fd:
 23:6f:1f:57:2e:df:95:3f:26:a5:13:4d:6d:96:12:56:98:db:
 2e:7d:fd:56:f5:71:b7:19:2b:c9:de:2d:b9:c8:17:cc:20:de:
 7c:19:7a:aa:12:97:1c:80:b7:d3:67:d3:b7:a7:96:f0:c9:4d:
 f5:8b:0e:10:3b:b9:4e:09:90:5a:3b:51:c9:48:a2:ca:9f:db:
 72:44:87:59:db:49:fa:75:44:b5:f6:7f:c5:26:e1:01:ae:7b:
 6f:4a:75:d1:b5:b3:68:c0:31:48:f8:5c:06:c0:f1:b4:96:e8:

Chapter 7 Reference: OpenShift Deployment
Implement Kubelink with a Private PKI

Illumio Core for Kubernetes and OpenShift 5.1 172

 38:e8:ad:44:3d:0a:8c:03:b6:2c:86:6a:f0:39:de:84:4b:2e:
 91:18:d1:45:65:d8:64:f5

Create a configmap in Kubernetes Cluster
After downloading the certificate locally on your machine, create a configmap in the
Kubernetes cluster that will copy the root CA certificate on your local machine into
the Kubernetes cluster.

To create configmap, run the following command:

$ kubectl -n kube-system create configmap root-ca-config \
 --from-file=./certs/root.democa.illumio-demo.com.crt

The --from-file option points to the path where the root CA certificate is stored on
your local machine.

To verify that configmap was created correctly, run the following command:

$ kubectl -n kube-system create configmap root-ca-config \
 > --from-file=./certs/root.democa.illumio-demo.com.crt
 configmap/root-ca-config created
 $
 $ kubectl -n kube-system get configmap
 NAME DATA AGE
 calico-config 8 142d
 cluster-info 4 142d
 coredns 1 142d
 coredns-autoscaler 1 142d
 crn-info-ibmc 6 142d
 extension-apiserver-authentication 6 142d
 iaas-subnet-config 1 142d
 ibm-cloud-cluster-ingress-info 2 142d
 ibm-cloud-provider-data 1 142d
 ibm-cloud-provider-ingress-cm 6 142d
 ibm-master-proxy-config 1 142d
 ibm-network-interfaces 1 142d
 kube-dns 0 142d
 kubernetes-dashboard-settings 1 44d
 metrics-server-config 1 142d

Chapter 7 Reference: OpenShift Deployment
Implement Kubelink with a Private PKI

Illumio Core for Kubernetes and OpenShift 5.1 173

 node-local-dns 1 142d
 root-ca-config 1 12s
 subnet-config 1 142d
 $
 $ kubectl -n kube-system describe configmap root-ca-config
 Name: root-ca-config
 Namespace: kube-system
 Labels: <none>
 Annotations: <none>

 Data
 ====
 root.democa.illumio-demo.com.crt:

 -----BEGIN CERTIFICATE-----
 MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
 ---output suppressed---
 wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
 -----END CERTIFICATE-----

 Events: <none>
 $

 root-ca-config is the name used to designate configmap. You can modify it according
to your naming convention.

Modify Kubelink Manifest File to Use Certificate
After creating the configmap in your Kubernetes cluster, modify the YAML file that
describes Kubelink.

The current manifest file provided by Illumio does not include this modification, by
default. Open the .yml file and add the following code blocks:

 l volumeMounts (under spec.template.spec.containers)

 l volumes (under spec.template.spec)

 volumeMounts:
 - name: root-ca
 mountPath: /etc/pki/tls/ilo_certs/

Chapter 7 Reference: OpenShift Deployment
Install and Pair VENs for Containers

Illumio Core for Kubernetes and OpenShift 5.1 174

 readOnly: false
 volumes:
 - name: root-ca
 configMap:
 name: root-ca-config

NOTE:
In a YAML file, the indentation matters. Make sure that the indentation in
the file is as specified.

root-ca is the name used to designate the new volume mounted in the container. You
can modify it according to your naming convention.

After successfully modifying the manifest file, deploy Kubelink. For more details, see
Deploy Kubelink.

Install and Pair VENs for Containers
Using the pairing profiles mentioned earlier in this guide to install the VEN on each
node of your OpenShift cluster. For more information about installing VENs, see
the VEN Installation and Upgrade Guide.

Ensure that either of the two requirements below have been met prior to installing the
VEN:

 l Kubelink is deployed on the OpenShift cluster and in sync with the PCE

 l Firewall coexistence is enabled

Below is a screenshot of Illumination with a master, compute, and infra node after
deploying and pairing the Illumio VEN.

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 175

Manage OpenShift Namespaces
After activating the VENs on the OpenShift cluster nodes and Kubelink is in sync with
the PCE, you can start managing the OpenShift projects (or namespaces). By default,
all namespaces are unmanaged, which means Illumio Core does not apply any
inbound or outbound controls to the pods within those namespaces. Any pods or ser-
vices within unmanaged namespaces do not show up in the PCE inventory and Illu-
mination.

After an Illumio Core PCE administrator changes an OpenShift namespace from
unmanaged to managed, the pods and services will show up in Illumination and inherit
the labels of each OpenShift namespace. The pods are represented in Illumio Core as
Container Workloads. If there are frontend services, then Illumio Core represents each
one as a Virtual Service.

The following section describes how to change a namespace from unmanaged to man-
aged.

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 176

Container Workload Profiles
Log into the PCE Web Console.

 1. From the PCE web console menu, choose Infrastructure > Container Clusters.

 2. Select the Container Cluster you want to manage.

 3. Select the Container Workload Profiles tab.

 4. You will see a list of all namespaces in the cluster. Select the namespace you
want to manage.

 5. Click Edit:

 a. Name is optional.

 b. Select a Container Workload Policy State (anything other than unman-
aged).

 c. Assign Labels (optional).

 d. Click Save.

When assigning labels, you can assign no labels, some labels, or all labels to the
namespace. If there is a label which is not assigned, then you can insert annotations
into the deployment configuration (or application configuration) to assign labels. If
there is a conflict between a label assigned via the Container Workload Profile and the
annotations in the deployment configuration, then the label from the Container Work-
load Profile will override the deployment configuration. Regardless of how you assign
labels, it is not required for pods or services to have all labels in order for the PCE to
manage them. Below are instructions on how to assign labels via the deployment con-
figuration.

Using Annotations

For Deployment Configurations (Pods)

 1. Open the OpenShift Web Console.

 2. Navigate to the desired deployment/daemon set and click Edit YAML.

 a. Inside the configuration YAML navigate to spec: > template: > metadata: >
annotations:. If annotations: does not exist, then create
an annotations: section underneath metadata:.

 b. The following Illumio label key fields which can go under the the annota-
tions: section.

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 177

 o com.illumio.role:

 o com.illumio.app:

 o com.illumio.env:

 o com.illumio.loc:

 c. Fill in the appropriate labels.

 d. Save the file and exit.

For Service Configurations (Services)

 1. Open the OpenShift Web Console.

 2. Navigate to the desired service and click Edit YAML.

 a. Inside the configuration YAML navigate to metadata: >
annotations:. If annotations: does not exist, then create
an annotations: section underneath metadata:.

 b. The following Illumio label key fields which can go under the the annota-
tions: section.

 o com.illumio.role:

 o com.illumio.app:

 o com.illumio.env:

 o com.illumio.loc:

 c. Fill in the appropriate labels.

 d. Save the file and exit.

When using the annotations method, you may need to restart the pods or service
after saving the changes to the YAML for the labels to get assigned.

Below are examples of pods and namespaces which use label assignments via either
Container Workload Profiles or a mix of Container Workload Profiles plus annotation
insertion.

This example changes unmanaged namespaces of Openshift infrastructure services
(such as apiserver, registry-console, etc.) into managed namespaces.

Things to notice about the example shown below:

 l There are Openshift infrastructure services, or control plane pods, that exist
within namespaces like default, kube-service-catalog, etc. They will inherit all four
R-A-E-L labels, including a Role label called "Control", from what has been con-
figured in the Container Workload Profile(s). The Application, Environment, and
Location labels are the same as the Openshift cluster nodes. This will minimize

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 178

the complexity of writing policy which is mentioned later in this guide.

 l The Kubelink pod exists in the kube-system. This pod will get the same applic-
ation, environment, and location labels as the Openshift cluster nodes. The role
label is left blank and will be specified later using the annotations. These labels
are assigned to the Kubelink pod through the Container Workload Profile asso-
ciated to the kube-system namespace.

 l There is a namespace called openshift which contains two different deployments
or a two-tier shopping cart application (Web and Database). To achieve tier-to-
tier segmentation across the application they would need different Role labels;
therefore, a Role label will be inserted into the annotations of each deployment
configuration.

Snippet of illumio-kubelink deployment configuration file shown here. Role label of
"Kubelink" inserted under spec: > template: > metadata: > annotations: section.

illumio-kubelink-openshift.yml

apiVersion: apps/v2
 kind: Deployment
 metadata:
 name: illumio-kubelink
 namespace: kube-system
 spec:
 replicas: 1

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 179

 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 labels:
 app: illumio-kubelink
 annotations:
 com.illumio.role: Kubelink

Snippet of the Shopping-Cart Web deployment configuration file shown here. Role
label of "Web" inserted under spec: > template: > metadata: > annotations: section.

shopping-cart-web.yml

spec:
 replicas: 3
 revisionHistoryLimit: 10
 selector:
 name: shopping-cart-web
 strategy:
 activeDeadlineSeconds: 21600
 resources: {}
 rollingParams:
 intervalSeconds: 1
 maxSurge: 25%
 maxUnavailable: 25%
 timeoutSeconds: 600
 updatePeriodSeconds: 1
 type: Rolling
 template:
 metadata:
 annotations:
 com.illumio.role: Web
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: null
 labels:

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 180

Snippet of the Shopping-Cart Database deployment configuration file shown here.
Role label of "Database" inserted under spec: > template: > metadata: > annotations:
section.

shopping-cart-db.yml

spec:
 replicas: 2
 revisionHistoryLimit: 10
 selector:
 name: postgresql
 strategy:
 activeDeadlineSeconds: 21600
 recreateParams:
 timeoutSeconds: 600
 resources: {}
 type: Recreate
 template:
 metadata:
 annotations:
 com.illumio.role: Database
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: null
 labels:

Below is the final outcome of the label assignment from the example.

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 181

Daemonsets and Replicasets
The steps above apply only to services in OpenShift which are bound to deployment or
deploymentconfig. This is due to the Kubelink's dependency on pod hash templates
which daemonset and replicaset configurations do not have. If you discover pods
derived from daemonset or replicaset configurations and also discover services
bound to those pods, then Kubelink will not automatically bind the virtual service and
service backends for the PCE. The absence of this binding will create limitations with
Illumio policies written against the virtual service. To get around this limitation for dae-
monsets and replicasets follow the steps below.

 1. Log into the CLI of any OpenShift node and generate a random uuid using the
uuidgen command.

 2. Copy the output of the uuidgen command.

 3. In the OpenShift web console, navigate to the configuration of the daemonset or
replicaset and edit the YAML file.

 4. Find the spec: > template: > metadata: > labels: field in the YAML and create
field called pod-template-hash: under the labels: section.

 5. Paste the new uuid to the value of the pod-template-hash: field.

 6. Save the changes.

Repeat steps 1 through 6 for each daemonset or replicaset configuration.

See screenshots below for DaemonSet or ReplicaSet reference.

Chapter 7 Reference: OpenShift Deployment
Manage OpenShift Namespaces

Illumio Core for Kubernetes and OpenShift 5.1 182

	Chapter 1 Overview of Containers in Illumio Core
	About This Guide
	How to Use This Guide
	Recommended Skills

	Architecture
	Containerized VEN (C-VEN)
	Kubelink
	Cluster Local Actor Store (CLAS)
	CLAS Degraded Mode
	Kubernetes Workloads
	Container Workloads
	Workloads
	Virtual Services
	Container Cluster
	Container Workload Profiles

	Chapter 2 Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
	Helm Chart Deployment Overview
	Host and Cluster Requirements
	Supported Configurations for On-premises and IaaS
	Privileges

	Prepare Your Environment
	Unique Machine ID
	Create Labels
	Create a ConfigMap to Store Your Root CA Certificate
	Configure Calico in Append Mode

	Create a Container Cluster in the PCE
	Create a Container Cluster
	Configure a Container Workload Profile Template

	Create a Pairing Profile for Your Cluster Nodes
	Map Kubernetes Node Labels to Illumio Labels
	Label Mapping CRD
	Example Label Map

	Deploy with Helm Chart
	Important Optional Parameters

	Re-Label Your Cluster Nodes
	Generating YAML Manifests for Manual Deployment
	Install Helm Tool
	Generate Files
	Remove Unpair DaemonSet and Job Objects

	Chapter 2 Deployment for C-VEN Versions 21.5.15 or Earlier
	Host and Cluster Requirements
	Supported Configurations for On-premises and IaaS
	Privileges

	Prepare Your Environment
	Unique Machine ID
	Create Labels
	Push Kubelink and C-VEN Images to Your Container Registry
	Create Illumio Namespace
	Authenticate Kubernetes Cluster with Container Registry
	Create a ConfigMap to Store Your Root CA Certificate
	Configure Calico in Append Mode

	Create a Container Cluster in the PCE
	Create a Container Cluster
	Configure a Container Workload Profile Template

	Deploy Kubelink in Your Cluster
	Prerequisites
	Configure Kubelink Secret
	Deploy Kubelink

	Deploy C-VENs in Your Cluster
	Prerequisites
	Create a Pairing Profile for Your Cluster Nodes
	Configure C-VEN Secret
	Deploy C-VENs

	Re-Label Your Cluster Nodes

	Chapter 3 Configure Labels for Namespaces, Pods, and Services
	Use Container Workload Profiles
	Configure New Container Workload Profiles
	Dynamic Creation of a Profile
	Manual Pre-creation of a Profile
	Set Enforcement
	Labels Restrictions for Kubernetes Namespaces

	Using Annotations
	Deployments
	Services
	DaemonSets and Replicasets
	Using Annotations in CLAS

	Chapter 4 Configure Security Policies for Containerized Environment
	IP and FQDN Lists
	FQDN Services for Kubernetes
	IP Lists for Kubernetes
	FQDN Services for OpenShift
	IP Lists for OpenShift

	Rules for Kubernetes or OpenShift Cluster
	Kubernetes
	OpenShift

	Rules for Containerized Applications
	Access Services from within the Cluster
	Access Services from Outside the Cluster
	Outbound Connections
	Liveness Probes
	NodePort Support on Kubernetes and OpenShift

	Rules and Traffic Considerations with CLAS
	Mandatory Rules
	ClusterIP Rules
	General Traffic View Changes
	CLAS Traffic Limitations

	Rules for Persistent Storage
	Kubernetes
	OpenShift

	Local Policy Convergence Controller
	About the Controller Behavior
	Configure the Illumio Readiness Gate
	Timer Customization
	Track the State of the Readiness Gate

	Firewall Coexistence on Pods

	Chapter 5 Upgrade and Uninstallation
	Migrate from Previous C-VEN Versions (21.5.15 or Earlier)
	Annotate and Label Resources
	Delete C-VEN DaemonSet
	Install Helm

	Upgrade and Uninstall Helm Chart Deployments
	Upgrade Helm Chart Deployments
	Uninstall Helm Chart Deployments

	Upgrade and Uninstall Non-Helm Chart Deployments
	Upgrade Illumio Components
	Uninstall Illumio from Your Cluster

	Upgrade to CLAS Architecture
	Pre-upgrade Policy Check
	Upgrade Strategy
	Upgrade Steps (on Each Kubernetes Cluster)

	Chapter 6 Reference: General
	Troubleshooting
	Helm deployment (and uninstall) fails with C-VEN stuck in ContainerCreating s...
	Failed Authentication with the Container Registry
	Kubelink Pod in CrashLoopBackOff State
	Container Cluster in Error
	Pods and Services Not Detected
	Pods Stuck in Terminating State
	Enable Firewall Coexistence

	Troubleshooting CLAS Mode Architecture
	Known Limitations
	Kubelink Monitoring and Troubleshooting
	Kubelink Process
	Kubelink Startup Log Messages
	Verify Kubelink Deployment
	PCE-Kubelink Connection and Heartbeat
	Additional Kubelink Monitoring
	Setting Log Verbosity

	Aggregating Logs from Kubelink and C-VEN Pods
	Loki and Grafana
	Fluent Bit

	Chapter 7 Reference: OpenShift Deployment
	Prepare OpenShift for Illumio Core
	Unique Machine ID
	Create Labels
	Create Pairing Profiles

	Deploy Kubelink
	Prerequisites
	Create Container Cluster
	Configure Container Workload Profile
	Configure Kubelink Secret
	Deploy Kubelink

	Implement Kubelink with a Private PKI
	Prerequisites
	Download the Root CA Certificate
	Create a configmap in Kubernetes Cluster
	Modify Kubelink Manifest File to Use Certificate

	Install and Pair VENs for Containers
	Manage OpenShift Namespaces
	Container Workload Profiles
	Using Annotations
	Daemonsets and Replicasets

